PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Two-dimensional turbulent burst examination and angle ratio utilization to detect scouring/sedimentation around mid-channel bar

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
River morphological dynamics are complex phenomena in natural and environmental fows. In particular, the sediment transport around braid mid-channel bars has not gained enough understanding from previous research. The efect of submergence ratio on the turbulence behavior in the proximity of the bar has been investigated in this study. The spatial distribution of turbulent fow in the proximity of bar has been studied by plotting the depth-averaged two-dimensional contours of turbulent kinetic energy. The high value of TKE has been observed in regions just downstream from the bar. It is due to the vortex shedding occurring in that region. The interaction of sweep and ejection events have been analyzed using the parameter Dominance Function obtained from the ratio of occurrence probability of ejection events to the occurrence probability of sweep events. This outcome indicates that the depth averaged parameter Dominance Function has successfully predicted the high scouring region which makes it an ideal parameter for analyzing the scour phenomena in real-world water management projects. The high scouring zone lies in the close proximity of the bar. This shows that the scouring efect from the bar is limited to its close region. The magnitude of scouring occurring at the upstream region of the bar also increases with the increment of submergence ratio. The relationship of quadrant event inclination angles with the sediment transport occurring in the proximity of bar has been also studied, where an Angle Ratio parameter has been utilized for linking the bed elevation change with the inclination angle. The results indicate that the AR parameter has been successfully tested in this study to show its competence to represent the turbulent burst-induced bed sedimentation and scouring.
Czasopismo
Rocznik
Strony
1335--1348
Opis fizyczny
Bibliogr. 78 poz.
Twórcy
  • Galgotias College of Engineering and Technology, Greater Noida 201306, India
autor
  • Center for Environmental Sciences & Engineering (CESE), Institution of Eminence, Shiv Nadar University, Greater Noida, UP 201303, India
autor
  • Department of Civil and Structural Engineering, University Of Bradford, Bradford BD7 1DP, UK
  • Indian Institute of Technology, Roorkee, India
  • National Institute of Technology Warangal, Warangal, India
Bibliografia
  • 1. Ali S, Ghani U, Latif A (2013) Study of turbulent kinetic energy and reattachment length downstream the obstruction in an open channel. Life Sci J 10:235–240
  • 2. Ashmore PE (1982) Laboratory modelling of gravel braided stream morphology. Earth Surf Proc Land 7(3):201–225
  • 3. Ashmore PE (1988) Bed load transport in braided gravel-bed stream models. Earth Surf Proc Land 13(8):677–695
  • 4. Ashworth PJ (1996) Mid-channel bar growth and its relationship to local flow strength and direction. Earth Surf Proc Land 21(2):103–123
  • 5. Ashworth P, Ferguson R, Powell M (1992) Bedload transport and sorting in braided channels, Dynamics of Gravel-Bed Rivers. In: Billi P (ed) John Wiley. New York
  • 6. Best JL (1986) The morphology of river channel confluences. Prog Phys Geogr 10(2):157–174
  • 7. Best JL, Ashworth PJ, Sarker MH, Roden JE, Gupta A (2007) The Brahmaputra-Jamuna River, Bangladesh." Large rivers: geomorphology and management, 395–430.
  • 8. Best JL, Ashworth PJ, Bristow CS, Roden JJJOSR (2003) Three-dimensional sedimentary architecture of a large, mid-channel sand braid bar, Jamuna River Bangladesh. J Sediment Res 73(4):516–530
  • 9. Blanckaert K, Joh UJ, Lemmin R (2006) Means of noise reduction in acoustic turbulence measurements. J Hydraul Res 44(1):3–17
  • 10. Bridge JS, Bennett SJ (1992) A model for the entrainment and transport of sediment grains of mixed sizes, shapes, and densities. Water Resour Res 28(2):337–363
  • 11. Bristow C, Best JL (1993) Braided rivers: perspectives and problems. Geol Soc Lond Spec Pub 75(1):1–11
  • 12. Callander R (1969) Instability and river channels. J Fluid Mech 36(3):465–480
  • 13. Cao Z (1997) Turbulent bursting-based sediment entrainment function. J Hydraul Eng 123(3):233–236
  • 14. Cellino M, Lemmin U (2004) Influence of coherent flow structures on the dynamics of suspended sediment transport in open-channel flow. J Hydraul Eng 130(11):1077–1088
  • 15. Church M, Jones D (1982) Gravel-bed rivers. An Integrated Approach, Sediment Cascades, pp 241–269
  • 16. Cuthbertson A, Ervine D (2007) Experimental study of fine sand particle settling in turbulent open channel flows over rough porous beds. J Hydraul Eng 133(8):905–916
  • 17. Czernuszenko W, Rowiński P (2008) Shear stress statistics in a compound channel flow. Arch Hydro-Engin Environ Mech 55(1–2):3–27
  • 18. Dargahi B (1990) Controlling mechanism of local scouring. J Hydraul Eng 116(10):1197–1214
  • 19. Das R (2020) Respond of bedforms to velocity power spectra of acoustic-doppler velocimetry data in rough mobile beds. Water Resour 47(5):835–845
  • 20. Detert M, Weitbrecht V, Jirka G (2007) Simultaneous velocity and pressure measurements using PIV and multi layer pressure sensor arrays in gravel bed flows. HMEM, Lake Placid
  • 21. Dey S, Raikar RV (2007) Characteristics of horseshoe vortex in developing scour holes at piers. J Hydraul Eng 133(4):399–413
  • 22. Doroudian B, Bagherimiyab F, Lemmin U (2010) Improving the accuracy of four-receiver acoustic Doppler velocimeter (ADV) measurements in turbulent boundary layer flows. Limonol Oceanogr Methods 8(11):575–591
  • 23. Duan JG, He L, Fu X, Wang Q (2009) Mean flow and turbulence around experimental spur dike. Adv Water Resour 32(12):1717–1725
  • 24. Esfahani FS, Keshavarzi A (2013) Dynamic mechanism of turbulent flow in meandering channels: considerations for deflection angle. Stoch Environ Res Risk Assess 27(5):1093–1114
  • 25. Finelli CM, Hart DD, Fonseca DM (1999) Evaluating the spatial resolution of an acoustic Doppler velocimeter and the consequences for measuring near-bed flows. Limnol Oceanogr 44(7):1793–1801
  • 26. García CM, Cantero MI, Niño Y, García MH (2005) Turbulence measurements with acoustic Doppler velocimeters. J Hydraul Eng 131(12):1062–1073
  • 27. Goring DG, Nikora VI (2002) Despiking acoustic Doppler velocimeter data. J Hydraul Eng 128(1):117–126
  • 28. Ha H, Chough SK (2003) Intermittent turbulent events over sandy current ripples: a motion-picture analysis of flume experiments. Sedim Geol 161(3–4):295–308
  • 29. Jang C-L, Shimizu Y (2007) Vegetation effects on the morphological behavior of alluvial channels. J Hydraul Res 45(6):763–772
  • 30. Jennifer D, Li H, Guangqian W, Xudong FU (2011) Turbulent burst around experimental spur dike. Int J Sedim Res 26(4):471–523
  • 31. Kadota A, Nezu I (1999) Three-dimensional structure of space-time correlation on coherent vortices generated behind dune crest. J Hydraul Res 37(1):59–80
  • 32. Katul G et al (1997) The ejection-sweep character of scalar fluxes in the unstable surface layer. Bound-Layer Meteorol 83(1):1–26
  • 33. Keshavarzi AR, Gheisi AR (2006) Stochastic nature of three dimensional bursting events and sediment entrainment in vortex chamber. Stoch Env Res Risk Assess 21(1):75–87
  • 34. Keshavarzi A, Shirvani A (2002) "Probability analysis of instantaneous shear stress and entraind particles from the bed." Proc., Proceedings of the CSCE/EWRI of ASCE Environmental engineering conference, Niagara
  • 35. Khan (2018) "Experimental Study on turbulence in the vicinity of mid-channel bar of braided river reach”. Doctoral Thesis, IIT Roorkee
  • 36. Khan MA, Sharma N (2019a) Turbulence study around bar in a braided river model. Water Resour 46(3):353–366
  • 37. Khan MA, Sharma N (2019b) "Investigation of coherent flow turbulence in the proximity of mid-channel bar. KSCE J Civ Eng 23(12):5098–5108
  • 38. Khan MA, Sharma N (2018) Analysis of turbulent flow characteristics around bar using the conditional bursting technique for varying discharge conditions. KSCE J Civ Eng 22(7):2315–2324
  • 39. Khan MA et al (2017) Experimental study on bursting events around a bar in physical model of a braided channel. ISH J Hydrual Eng 23(1):63–70
  • 40. Khan MA, Sharma N, Singhal GD (2016). "Experimental study on bursting events around a bar in physical model of a braided channel." ISH Journal of Hydraulic Engineering: 1–8
  • 41. Kline SJ, Reynolds WC, Schraub F, Runstadler PW (1967) The structure of turbulent boundary layers. J Hydraul Econ 30(4):741–773
  • 42. Lane S, Biron P, Bradbrook K, Butler J, Chandler J, Crowell M, McLelland S, Richards K, Roy AG (1998) Three-dimensional measurement of river channel flow processes using acoustic Doppler velocimetry. Earth Surf Process Landf: J Br Geomorphol Group 23(13):1247–1267
  • 43. Lee SO, Hong SH (2019) Turbulence characteristics before and after scour upstream of a scaled down bridge pier model. Water 11(9):1900
  • 44. Leopold L, Wolman M (1957) "River channel patterns." Fluv Geom: Geom Crit –Conc Vol, 3
  • 45. Li S-G et al (1992) Stochastic theory for irregular stream modeling. Part I: flow resistance. J Hydraul Eng 118(8):1079–1090
  • 46. Lien R-C, D’Asaro EA (2006) Measurement of turbulent kinetic energy dissipation rate with a Lagrangian float. J Atmos Ocean Tech 23(7):964–976
  • 47. Liu M, Zhu DZ, Rajaratnam N (2002) Evaluation of ADV measurements in bubbly two-phase flows. Hydraulic Measurements and Experimental Methods 2002
  • 48. MacVicar B, Beaulieu E, Champagne V, Roy AG (2007) Measuring water velocity in highly turbulent flows: field tests of an electromagnetic current meter (ECM) and an acoustic Doppler velocimeter (ADV). Earth Surf Process Landf: J Br Geomorphol Res Group 32(9):1412–1432
  • 49. Maity H, Mazumder BS (2012) Contributions of burst-sweep cycles to Reynolds shear stress over fluvial obstacle marks generated in a laboratory flume. Int J Sedim Res 27(3):378–387
  • 50. Maity H, Mazumder BS (2014) Experimental investigation of the impacts of coherent flow structures upon turbulence properties in regions of crescentic scour. Earth Surf Process Landf 39(8):995–1013
  • 51. Mao Y (2003) The effects of turbulent bursting on the sediment movement in suspension. Int J Sedim Res 18(2):148–157
  • 52. Matthes GH (1947) Macroturbulence in natural stream flow. EOS Trans Am Geophys Union 28(2):255–265
  • 53. Mazumder B, Ojha SP (2007) Turbulence statistics of flow due to wave–current interaction. Flow Meas Instrum 18(3):129–138
  • 54. McLelland SJ, Nicholas AP (2000) A new method for evaluating errors in high-frequency ADV measurements. Hydraul Process 14(2):351–366
  • 55. Mori N, Suzuki T, Kakuno S (2007) Noise of acoustic Doppler velocimeter data in bubbly flows. J Eng Mech 133(1):122–125
  • 56. Mosley MP (1976) An experimental study of channel confluences. J Geol 84:535–562
  • 57. Muzzammil M, Gangadhariah T (2003) The mean characteristics of horseshoe vortex at a cylindrical pier. J Hydraul Res 41(3):285
  • 58. Nakagawa H, Nezu I (1981) Structure of space-time correlations of bursting phenomena in an open-channel flow. J Fluid Mech 104:1–43
  • 59. Nikora V, Goring D (2000) Flow turbulence over fixed and weakly mobile gravel beds. J Hydraul Eng 126(9):679–690
  • 60. Nussbaumer HJ (1981) The fast Fourier transform Fast Fourier Transform and Convolution Algorithms. Springer, Berlin
  • 61. Offen G, Kline S (1975) A proposed model of the bursting process in turbulent boundary layers. J Fluid Mech 70(2):209–228
  • 62. Ojha SP, Mazumder BS (2008) Turbulence characteristics of flow region over a series of 2-D dune shaped structures. Adv Water 31(3):561–576
  • 63. Parker G (1976) On the cause and characteristic scales of meandering and braiding in rivers. J Fluid Mech 76(03):457–480
  • 64. Pizarro A, Manfreda S, Tubaldi E (2020) "The science behind scour at bridge foundations: a review. Water 12(2):374
  • 65. Pu JH (2015) Turbulence modelling of shallow water flows using kolmogorov approach. Comput Fluids 115:66–74
  • 66. Roy A, Bergeron N (1990) Flow and particle paths at a natural river confluence with coarse bed material. Geomorphology 3(2):99–112
  • 67. Salim S, Pattiaratchi C, Tinoco R, Coco G, Hetzel Y, Wijeratne S, Jayaratne R (2017) The influence of turbulent bursting on sediment resuspension under unidirectional currents. Earth Surf Dyn 5(3):399–415
  • 68. Sarkar A, Ratha D (2014) Flow around submerged structures subjected to shallow submergence over plane bed. J Fluids Struct 44:166–181
  • 69. Schindler RJ, Robert J (2005) Flow and turbulence structure across the ripple–dune transition: an experiment under mobile bed conditions. Sedimentology 52(3):627–649
  • 70. Séchet P, Guennec Le (1999) Bursting phenomenon and incipient motion of solid particles in bed-load transport. J Hydraul Res 37(5):683–696
  • 71. Shamloo H, Rajaratnam N, Katopodis C (2001) Hydraulics of simple habitat structures. J Hydraul Res 39(4):351–366
  • 72. Sharma N (2004) Mathematical modelling and braid indicators The Brahmaputra basin water resources. Springer, Berlin
  • 73. Thorne CR, Russell AP, Alam MK (1993) Planform pattern and channel evolution of the Brahmaputra River, Bangladesh. Geol Soc, Lond, Special Publ 75(1):257–276
  • 74. Van Rijn LC (2013). "Simple general formulae for sand transport in rivers, estuaries and coastal waters." 1–16
  • 75. Voulgaris G, Trowbridge JH (1998) Evaluation of the acoustic Doppler velocimeter (ADV) for turbulence measurements. J Atmos Oceanic Tech 15(1):272–289
  • 76. Wahl TL (2000) Analyzing ADV data using WinADV. Building partnerships 1–10
  • 77. Wu F-C, Jiang M-R (2007) Numerical investigation of the role of turbulent bursting in sediment entrainment. J Hydraul Eng 133(3):329–334
  • 78. Zheng XG, Pu JH, Chen R, Liu X, Shao S (2016) A novel explicit-implicit coupled solution method of SWE for long-term river meandering process induced by dambreak. J Appl Fluid Mech 9(6):2647–2660
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e31be8ab-a8a0-41b2-91db-b3cebaa905cc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.