PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Quasi-Static Electromagnetic Dosimetry: From Basic Principles to Examples of Applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An overview of quasi-static electromagnetic dosimetry is presented. After an introductive description of quantities and standards and a quick look at experimental and analytical approaches, attention is focused on numerical dosimetry. The process that leads to the calculation of results is analyzed in its basic steps, including the representation of the human body by means of a realistic voxel phantom. The most popular numerical methods are then described. An analysis of different methods in the same framework emphasizes common features and differences. This can help in choosing a more suitable method to solve a particular problem. An example of an application is finally reported.
Rocznik
Strony
201--215
Opis fizyczny
Bibliogr. 39 poz., rys., tab., wykr.
Twórcy
  • Institute for Applied Physics “Nello Carrara” of the Italian National Research Council (IFAC-CNR), Italy
autor
  • Institute for Applied Physics “Nello Carrara” of the Italian National Research Council (IFAC-CNR), Italy
Bibliografia
  • 1.International Commission on Non-Ionizing Radiation Protection. Guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields (up to 300 GHz). Health Phys. 1998;74(4):494–522.
  • 2.Directive 2004/40/EC of the European Parliament and of the Council of 29 April 2004 on the minimum health and safety requirements regarding the exposure of workers to the risks arising from physical agents (electromagnetic fields) (eighteenth individual Directive within the meaning of Article 16(1) of Directive 89/391/EEC). Official Journal of the European Union L 184, May 24, 2004. p. 1–9.
  • 3.Hill DA, Walsh JA. Radio-frequency current through the feet of a grounded human. IEEE Trans Electr Compat. 1985;EMC-27(1):18–23.
  • 4.Gandhi OP, Chen JY, Riazi A. Currents induced in a human being for plane–wave exposure conditions 0–50 MHz and for RF sealers. IEEE Trans Biomed Eng. 1986;BME-33(8):757–68.
  • 5.Hagmann MJ, Babij TM. Noninvasive measurement of current in the human body for electromagnetic dosimetry. IEEE Trans Biomed Eng. 1993;BME-40(5):418–23.
  • 6.Geddes LA. Interface design for bioelectrode systems. IEEE Spectr. 1972;9(10):41–8.
  • 7.Gundersen R, Greenebaum B. Low-voltage ELF electric field measurements in ionic media. Bioelectromagnetics. 1985;6:157–68.
  • 8.Kaune WT, Guttman JL, Kavet R. Comparison of coupling of humans to electric and magnetic fields with frequencies between 100 Hz and 100 kHz. Bioelectromagnetics. 1997;18:67–76.
  • 9.McLeod BR, Pilla AA, Sampsel MW. Electromagnetic fields induced by Helmholtz aiding coils inside saline-filled boundaries. Bioelectromagnetics. 1983;4:357–70.
  • 10.Polk C. Electric fields and surface charges induced by ELF magnetic fields. Bioelectromagnetics. 1990;11:189–201.
  • 11.Durney CH, Johnson CC, Massoudi H. Long-wavelength analysis of plane wave irradiation of a prolate spheroid model of man. IEEE Trans MTT. 1975;MTT-23(2):246–53.
  • 12.Johnson CC, Durney CH, Massoudi H. Long-wavelength electromagnetic power absorption in prolate spheroidal models of man and animals. IEEE Trans MTT. 1975;MTT-23(9):739–48.
  • 13.Massoudi H, Durney CH, Johnson CC. Long-wavelength analysis of plane wave irradiation of an ellipsoidal model of man. IEEE Trans MTT. 1977;MTT-25(1):41–6.
  • 14.Massoudi H, Durney CH, Johnson CC. Long-wavelength electromagnetic power absorption in ellipsoidal models of man and animals IEEE Trans MTT. 1977:MTT-25(1):47–52.
  • 15.Binns KJ, Lawrenson PJ. Analysis and computation of electric and magnetic field problems. 2nd ed. Oxford, UK: Pergamon Press; 1973.
  • 16.Cheng J, Stuchly MA, DeWagter C, Martens L. Magnetic field induced currents in a human head from use of portable appliances. Phys Med Biol. 1995;40:495–510.
  • 17.Dimbylow PJ. FDTD calculations of the whole-body averaged SAR in an anatomically realistic voxel model of the human body from 1 MHz to 1 GHz. Phys Med Biol. 1997;42:479–90.
  • 18.Dimbylow PJ. The development of realistic voxel phantoms for electromagnetic field dosimetry. In: Proceedings of the International Workshop on Voxel Phantom Development. Chilton, UK: National Radiological Protection Board; 1996. p. 1–7.
  • 19.U.S. Air Force Research Laboratory. EMF dosimetry research. Brooks Air Force Base, TX, USA. Retrieved April 20, 2006, from: http://www.brooks.af.mil/AFRL/HED/hedr/dosimetry.html.
  • 20.U.S. National Library of Medicine. The Visible Human Project®. Retrieved April 20, 2006, from: http://www.nlm.nih.gov/research/visible/visible_human.html.
  • 21.Gabriel C, Gabriel S, Corthout E (part I only), Lau RW (parts II and III only). The dielectric properties of biological tissues (part I, II and III). Phys Med Biol. 1996;41:2231–93.Gab
  • 22.Gabriel C, Gabriel S. Compilation of the dielectric properties of body tissues at RF and microwave frequencies. Retrieved April 20, 2006, from: http://www.brooks.af.mil/AFRL/HED/hedr/reports/dielectric/home.html.
  • 23.U.S. Federal Communications Commission. Tissue dielectric properties. Retrieved April 20, 2006, from: http://www.fcc.gov/cgi-bin/dielec.sh.
  • 24.Institute for Applied Physics “Nello Carrara” (IFAC) of the Italian National Research Council (CNR). Dielectric properties of body tissues. Retrieved April 20, 2006, from: http://niremf.ifac.cnr.it/tissprop/.
  • 25.Farace P, Pontalti R, Cristoforetti L, Antolini R, Scarpa M. An automated method for mapping human tissue permittivities by MRI in hyperthermia treatment planning. Phys Med Biol. 1997;42:2159–74.
  • 26.Hart FX. Numerical and analytical methods to determine the current density distributions produced in human and rat models by electric and magnetic fields. Bioelectromagnetics. 1992;Suppl 1:27–42.
  • 27.Harrington RF. Field computation by moment methods. New York, NY, USA: Macmillan; 1968.
  • 28.Chen KM, Chuang HR, Lin CJ. Quantification of interaction between ELF-LF electric fields and human bodies. IEEE Trans Biomed Eng. 1986;BME-33(8):746–56.
  • 29.Booton Jr RC. Computational methods for electromagnetics and microwaves. New York, NY, USA: Wiley; 1992.
  • 30.Gandhi OP, DeFord JF, Kanai H. Impedance method for calculation of power deposition patterns in magnetically induced hyperthermia. IEEE Trans Biomed Eng. 1984;BME-31(10):644–51.
  • 31.Dawson TW, Caputa K, Stuchly MA. Numerical evaluation of 60 Hz magnetic induction in the human body in complex occupational environments. Phys Med Biol. 1999;44:1025–40.
  • 32.Dimbylow PJ. Current densities in a 2 mm resolution anatomically realistic model of the body induced by low frequency electric fields. Phys Med Biol. 2000:45:1013–22.
  • 33.DeFord JF, Gandhi OP. An impedance method to calculate currents induced in biological bodies exposed to quasi-static electromagnetic fields. IEEE Trans Electr Compat. 1985;EMC-27(3):168–73.
  • 34.Kunz KS, Luebbers RJ. The finite difference time domain method for electromagnetics. Boca Raton, FL, USA: CRC Press; 1993.
  • 35.Sullivan DM, Borup DT, Gandhi OP. Use of the finite-difference time-domain method in calculating EM absorption in human tissues. IEEE Trans Biomed Eng. 1987:BME-34(2):148–58.
  • 36.Dimbylow PJ. The calculation of induced currents and absorbed power in a realistic, heterogeneous model of the lower leg for applied electric fields from 60 Hz to 30 MHz. Phys Med Biol. 1988;33:1453–68.
  • 37.Dimbylow PJ. Induced current densities from low-frequency magnetic fields in a 2 mm resolution, anatomically realistic model of the body. Phys Med Biol. 1998;43:221–30.
  • 38.Davey KR, Cheng CH, Epstein CM. Prediction of magnetically induced electric fields in biological tissue. IEEE Trans Biomed Eng. 1991;BME-38(5):418–22.
  • 39.Press WH, Teukolsky SA, Vetterling WT, Flannery BF. Numerical recipes in C: the art of scientific computing. 2nd ed. Cambridge, UK: Cambridge University Press; 1992.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e30d9b78-5180-4dc9-b19e-8b73f8dce920
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.