Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the present work, attention is paid to the nonlinear vibrations and chaotic dynamic behaviors of rotating graphene platelets reinforced metal foams (GPLRMF) blades operating in a thermal environment. Considering three different distribution patterns of graphene platelets (GPL) and foams, the improved Halpin–Tsai model, mixing rules and Maxwell-Eucken model are applied to obtain the physical parameters of rotating GPLRMF plates. The motion equations of GPLRMF rotating plates are established through higher-order shear deformation theory (HSDT), in which the centrifugal force, Coriolis force and heat conduction are included. Under the cantilever and simply supported boundary conditions, the nonlinear ordinary differentia equation (ODE) of the system is obtained by Galerkin method. The amplitude-frequency response, bifurcation curve, and chaotic motion of the rotating GPLRMF blades are analyzed with the aid of the methods of multi-scale and Runge–Kutta. Furthermore, comprehensive investigations into the effects of temperature, presetting angle, GPL distribution mode, foam distribution mode, volume fraction, porosity coefficient, rotational speed, damping coefficient, and excitation force on the nonlinear dynamics of rotating plates are performed through numerical analyses.
Czasopismo
Rocznik
Tom
Strony
art. no. e45, 2024
Opis fizyczny
Bibliogr. 67 poz., rys., wykr.
Twórcy
autor
- College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing 400044, China
autor
- College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing 400044, China
Bibliografia
- 1. Chai QD, Wang YQ. Traveling wave vibration of grapheneplatelet reinforced porous joined conical-cylindrical shells ina spinning motion. Eng Struct. 2022;252: 113718.
- 2. She GL, Ding HX. Nonlinear primary resonance analysis of ini-tially stressed graphene platelet reinforced metal foams doublycurved shells with geometric imperfection. Acta Mech Sinica-Prc. 2023;39: 522392.
- 3. Zhang YW, She GL. Nonlinear low-velocity impact response ofgraphene platelet-reinforced metal foam cylindrical shells underaxial motion with geometrical imperfection. Nonlinear Dynam.2023;111:6317–34.
- 4. Wang YW, Zhang W. On the thermal buckling and postbucklingresponses of temperature-dependent graphene platelets reinforcedporous nanocomposite beams. Compos Struct. 2022;296: 115880.
- 5. Li YP, She GL, Gan LL, Liu HB. Nonlinear thermal post-buck-ling analysis of graphene platelets reinforced metal foams plateswith initial geometrical imperfection. Steel Compos Structures.2023;46:649–58.
- 6. Zhang YW, She GL, Ding HX. Nonlinear resonance of grapheneplatelets reinforced metal foams plates under axial motion withgeometric imperfections. Eur J Mech A-Solid. 2023;98: 104887.
- 7. Ding HX, She GL. Nonlinear resonance of axially moving gra-phene platelet-reinforced metal foam cylindrical shells with geometric imperfection. Arch Civ Mech Eng. 2023;23:97.
- 8. Twinkle CM, Pitchaimani J. Free vibration and stability of graphene platelet reinforced porous nano-composite cylindricalpanel: Influence of grading, porosity and non-uniform edge loads.Eng Struct. 2021;230: 111670.
- 9. Yang ZC, Wu HL, Yang J, Liu AR, Safaei B, Lv JE, Fu JY. Non-linear forced vibration and dynamic buckling of FG graphene-reinforced porous arches under impulsive loading. Thin-WalledStruct. 2022;181: 110059.
- 10. Salehi M, Gholami R, Ansari R. Nonlinear Resonance of Func-tionally Graded Porous Circular Cylindrical Shells Reinforced byGraphene Platelet with Initial Imperfections Using Higher-OrderShear Deformation Theory. Int J Struct Stab Dy. 2022;22: 250075.
- 11. Eyvazian A, Zhang CW, Musharavati F, Khan A, Alkhedher M.Free vibration analysis and post-critical free vibrations of nano-composite rotating beams reinforced with graphene platelet. J VibControl. 2023;29:636–48.
- 12. Xu XL, Zhang CW, Khan A, Sebaey TA, Alkhedher M. Freevibrations of rotating CNTRC beams in thermal environment.Case Stud Therm Eng. 2021;28: 101355.
- 13. Xu J, Yang ZC, Yang J, Li YH. Influence of the boundaryrelaxation on the free vibration of rotating composite laminatedTimoshenko beams. Compos Struct. 2021;266: 113690.
- 14. Eyvazian A, Zhang CW, Alkhedher M, Muhsen S, ElkotbMA. Thermal buckling and post-buckling analyses of rotatingTimoshenko microbeams reinforced with graphene platelet. Compos Struct. 2022;304: 116358.
- 15. Hosseini SMH, Arvin H, Kiani Y. On buckling and post-bucklingof rotating clamped-clamped functionally graded beams in thermal environment. Mech Based Des Struc. 2022;50:2779–94.
- 16. Ozdemir O. Vibration and Buckling Analyses of Rotating Axially Functionally Graded Nonuniform Beams. J Vib Eng Technol.2022;10:1381–97.
- 17. Guo ML, Arvin H. Nonlinear thermal buckling instability analysis of a rotating nanocomposite beam reinforced with grapheneplatelet via the Chebyshev-Ritz scheme. Eng Anal Bound Elem.2023;146:241–51.
- 18. Fang JS, Zheng S, Xiao JQ, Zhang XP. Vibration and thermalbuckling analysis of rotating nonlocal functionally graded nano-beams in thermal environment. Aerosp Scl Technol. 2020;106:106146.
- 19. Ozdemir O, Esen I, Ural H. Vibration response of rotating carbon nanotube reinforced composites in thermal environment. SteelCompos Structures. 2023;47:1–17.
- 20. Phuc PM, Thanh VN. On the Vibration Analysis of RotatingPiezoelectric Functionally Graded Beams Resting on ElasticFoundation with a Higher-Order Theory. Int J Aerospace Eng.2022;2022:9998691.
- 21. Oh SY, Song O, Librescu L. Librescu, Effects of pretwist andpresetting on coupled bending vibrations of rotating thin-walledcomposite beams. Int J Solids Struct. 2003;40:1203–1224l.
- 22. Latalski J, Warminski J. Primary and combined multi-frequencyparametric resonances of a rotating thin-walled composite beamunder harmonic base excitation. J Sound Vib. 2022;523: 116680.
- 23. Zhao TY, Wang YX, Chen L. Mathematical modeling and vibration analysis of rotating functionally graded porous spacecraftsystems reinforced by graphene nanoplatelets. Math Method Appl Sci. 2023. https://doi.org/10.1002/mma.9189.
- 24. Zhang J, Du XK, Chen YZ, Guo X, Li L, Zhang DG. Free vibra-tion analysis of a rotating skew plate by using the absolute nodalcoordinate formulation. Thin-Walled Struct. 2023;188: 110840.
- 25. Zhao TY, Wang YX, Cui XZ, Wang X. Analytical Solutionfor Forced Vibration Characteristics of Rotating Functionally Graded Blades under Rub-Impact and Base Excitation. Materials. 2022;15:2175.
- 26. Kou HJ, Zhang T, Du JJ, Zhu ZD, Liang F, Zhang F, ZengL. Thermo-large deflection coupled dynamic characteristics of rotating thickness-varying plates subjected to thermal shock. Int J Nonlin Mech. 2022;146: 104145.
- 27. Han P, Li G, Kim K, An K, Yun H. A unified solution methodfor free vibration analysis of functionally graded rotatingtype plates with elastic boundary condition. J Ocean Eng Sci.2021;6:109–27.
- 28. Wang YW, Chen J. Nonlinear free vibration of rotating functionally graded graphene platelets reinforced blades with variablecross-sections. Eng Anal Bound Elem. 2022;144:262–78.
- 29. Li WQ, Hu YD. Magneto-Aeroelastic Internal Resonances of aRotating Circular Plate Based on Gyroscopic Systems Decoupling. Int J Struct Stab Dy. 2021;21:2150010.
- 30. Aris H, Ahmadi H. Nonlinear forced vibration and resonanceanalysis of rotating stiffened FGM truncated conical shells in athermal environment. Mech Based Des Struc. 2023;51:4063–87.
- 31. Aris H, Ahmadi H. Using the higher-order shear deformation theory to analyze the free vibration of stiffened rotating FGM conical shells in a thermal environment. Thin-Walled Struct. 2023;183:110366.
- 32. Guo HL, Du XL, Zur KK. On the dynamics of rotating matrixcracked FG-GPLRC cylindrical shells via the element-free IMLS-Ritz method. Eng Anal Bound Elem. 2021;131:228–39.
- 33. Sun SP, Liu L. Multiple internal resonances in nonlinear vibrations of rotating thin-walled cylindrical shells. J Sound Vib.2021;510: 116313.
- 34. Chen YK, Ye TG, Jin GY, Li SJ, Yang CM. Vibration analysis ofrotating pretwist FG sandwich blades operating in thermal environment. Int J Mech Sci. 2021;205: 106596.
- 35. Guo HL, Ouyang X, Zur KK, Wu XT, Yang TZ, Ferreira AJM.On the large-amplitude vibration of rotating pretwisted graphene nanocomposite blades in a thermal environment. Compos Struct.2022;282: 115129.
- 36. Ansari E, Setoodeh AR, Rabczuk T. Rabczuk, Isogeometric-step-wise vibrational behavior of rotating functionally graded bladeswith variable thickness at an arbitrary stagger angle subjected to thermal environment. Compos Struct. 2020;244: 112281.
- 37. Jia TC, Li CF, Pan SJ, Wang YZ. Investigation of vibration naturalcharacteristics and response for rotating beam with ten on jointed structure under thermal environment. J Sound Vib. 2023;560:117800.
- 38. Lin BC, Chen B, Zhu B, Li JA, Li YH. Dynamic stability analysis for rotating pre-twisted FG-CNTRC beams with geometric imperfections restrained by an elastic root in thermal environment.Thin-Walled Struct. 2021;164: 107902.
- 39. Cao DX, Liu BY, Yao MH, Zhang W. Free vibration analysis of apre-twisted sandwich blade with thermal barrier coatings layers.Sci China Technol Sc. 2017;60:1747–61.
- 40. Zhang B, Zhang YL, Yang XD, Chen LQ. Saturation and stabilityin internal resonance of a rotating blade under thermal gradient.J Sound Vib. 2019;440:34–50.
- 41. Zhang B, Ding H, Chen LQ. Super-harmonic resonances of arotating pre-deformed blade subjected to gas pressure. Nonlinear Dynam. 2019;98:2531–49.
- 42. Zhang B, Li YM. Nonlinear vibration of rotating pre-deformedblade with thermal gradient. Nonlinear Dynam. 2016;86:456–78.
- 43. Teng MW, Wang YQ. Nonlinear forced vibration of simply supported functionally graded porous nanocomposite thin platesre in forced with graphene platelets. Thin-Walled Struct. 2021;164:107799.
- 44. Chen C, Li DK, Zhou X, Zhou LL. Thermal vibration analysis off unctionally graded graphene platelets-reinforced porous beams using the transfer function method. Eng Structures. 2023;284:115963.
- 45. Genao FY, Kim J, Zur KK. Nonlinear finite element analysis of temperature-dependent functionally graded porous micro-platesunder thermal and mechanical loads. Compos Struct. 2021;256:112931.
- 46. Wu CP, Hung YC. Three-dimensional free vibration analysis off unctionally graded graphene platelets-reinforced composite toroi-dal shells. Eng Structures. 2022;269: 114795.
- 47. Zhang CW, Wang LM, Eyvazian A, Khan A, Sebaey TA, Farouk N. Analytical study of the damping vibration behavior of the metalfoam nanocomposite plates reinforced with graphene oxide powders in thermal environments. Arch Civ Mech Eng. 2021;21:142.
- 48. Qian QF, Wang Y, Zhu F, Feng C, Yang J, Wang SG. Primarynonlinear damped natural frequency of dielectric composite beam reinforced with graphene platelets (GPLs). Arch Civ Mech Eng.2022;22:53.
- 49. Sobhy M. Piezoelectric bending of GPL-reinforced annular andcircular sandwich nanoplates with FG porous core integrated withsensor and actuator using DQM. Arch Civ Mech Eng. 2021;21:78.
- 50. Chu K, Jia CC, Li WS. Effective thermal conductivity of graphene-based composites. Appl Phys Lett. 2012;101: 121916.
- 51. Do VNV, Lee CH. 3D heat conduction-induced postbucklingbehaviour of thin-walled imperfect laminated cylindrical panels reinforced with graphene platelets. Eng Structures. 2023;288:116189.
- 52. Yang B, Yang J, Kitipornchai S. Thermoelastic analysis of functionally graded graphene reinforced rectangular plates based on3D elasticity. Meccanica. 2017;52:2275–92.
- 53. Gao WL, Qin ZY, Chu FL. Wave propagation in functionallygraded porous plates reinforced with graphene platelets. Aerosp Sci Technol. 2020;102: 105860.
- 54. Yang FL, Wang YQ, Liu YF. Low-velocity impact response of axially moving functionally graded graphene platelet reinforced metal foam plates. Aerosp Sci Technol. 2022;123: 107496.
- 55. Yang J, Chen D, Kitipornchai S. Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev-Ritz method. Compos Struct.2018;193:281–94.
- 56. Dang PF, Yang ZX, Yan YY, Han QK, Jin ZH. Nonlinear vibration characteristics of rotating composite blade considering the temperature-dependent graded material properties. Compos Struct.2021;258: 113419.
- 57. Gu XJ, Hao YX, Zhang W, Chen J. Dynamic stability of rotating cantilever composite thin walled twisted plate with initial geometric imperfection under in-plane load. Thin-Walled Struct.2020;144: 106267.
- 58. Sh EL, Kattimani S, Vinyas M. Nonlinear free vibration and transient responses of porous functionally graded magneto-electro-elastic plates. Arch Civ Mech Eng. 2022;22:38.
- 59. Civalek O, Dastjerdi S, Akgöz B. Buckling and free vibrationsof CNT-reinforced cross-ply laminated composite plates. Mech Based Des Struc. 2022;50:1914–31.
- 60. Albas SD, Ersoy H, Akgoz B, Civalek O. Dynamic analysis of afiber-reinforced composite beam under a moving load by the Ritz method. Mathematics-Basel. 2022;9:1048.
- 61. Civalek O, Akbas SD, Akgöz B, Dastjerdi S. Forced vibration analysis of composite beams reinforced by carbon nanotubes.Nanomaterial-Basel. 2021;11:571.
- 62. Zhang YF, Niu Y, Zhang W. Nonlinear vibrations and internalresonance of pretwisted rotating cantilever rectangular plate with varying cross-section and aerodynamic force. Wng Struct.2020;225: 111259.
- 63. Zhang Y, Ma L, Zhang W, Gu X. Nonlinear dynamic responses off unctionally graded graphene platelet reinforced composite canti-lever rotating warping plate. Appl Math Model. 2023;113:44–70.
- 64. Young D. VIBRATION OF RECTANGULAR PLATES BY THERITZ METHOD. J Appl Mech-T Asme. 1950;17:448–53.
- 65. Yao MH, Niu Y, Hao YX. Nonlinear dynamic responses of rotating pretwisted cylindrical shells. Nonlinear Dynam.2019;95:151–74.
- 66. Al-Furjan MSH, Dehini R, Paknahad M, Habibi M, Safar-pour H. On the nonlinear dynamics of the multi-scale hybrid nanocomposite-reinforced annular plate under hygro-thermal environment. Arch Civ Mech Eng. 2021;21:4.
- 67. Ahmadi H, Foroutan K. Nonlinear primary resonance of spiral stiffened functionally graded cylindrical shells with damping force using the method of multiple scales. Thin-Walled Struct.2019;135:33–44.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e30c1ef5-031b-4bdb-b9f4-e12307c0cc78
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.