PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cold cracking of underwater wet welded S355G10+N high strength steel

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Water as the welding environment determines some essential problems influencing steel weldability. Underwater welding of high strength steel joints causes increase susceptibility to cold cracking, which is an effect of much faster heat transfer from the weld area and presence of diffusible hydrogen causing increased metal fragility. The paper evaluates the susceptibility to cold cracking of the high strength S355G10+N steel used, among others, for ocean engineering and hydrotechnical structures, which require underwater welding. It has been found from the CTS test results that the investigated steel is susceptible to cold cracking in the wet welding process.
Rocznik
Strony
48--56
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
autor
  • Gdansk University of Technology, Department of Materials Science and Welding Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Gdansk University of Technology, Department of Materials Science and Welding Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland
autor
  • Gdansk University of Technology, Department of Materials Science and Welding Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland
autor
  • Gdansk University of Technology, Department of Materials Science and Welding Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
  • 1. Fydrych D., Łabanowski J., Rogalski G.: Weldability of high strength steels in wet welding conditions. Polish Maritime Research, 2 (2013).
  • 2. Gao W., Wang D., Cheng F., Deng C., Liu Y., Xu W.: Enhancement of the fatigue strength of underwater wet welds by grinding and ultrasonic impact treatment. Journal of Materials Processing Technology, 223 (2015).
  • 3. Zhang H.T., Dai X.Y., Feng J.C., Hu L.L.: Preliminary investigation on real-time induction heating-assisted underwater wet welding. Welding Journal, 1 (2015).
  • 4. Guo N., Du Y., Feng J., Guo W., Deng Z.: Study of underwater wet welding stability using an X-ray transmission method. Journal of Materials Processing Technology, 225 (2015).
  • 5. Guo N., Guo W., Du Y., Fu Y., Feng J.: Effect of boric acid on metal transfer mode of underwater flux-cored wire wet welding. Journal of Materials Processing Technology, 223 (2015).
  • 6. Gao W.B., Wang D.P., Cheng F.J., Deng C.Y., Xu W.: Underwater wet welding for HSLA steels: chemical composition, defects, microstructures, and mechanical properties. Acta Metallurgica Sinica (English Letters), 9 (2015).
  • 7. Maksimov S.Y.: Prevention of cold cracks in heat affected zone in underwater welding of low-alloyed high-strength steels. Збірник Наукових Праць НУК, 4 (2014).
  • 8. Silva L.F., dos Santos V.R., Paciornik S., Mertens J.C.E., Chawla N.: Multiscale 3D characterization of discontinuities in underwater wet welds. Materials Characterization, 107 (2015).
  • 9. Fydrych D., Rogalski G., Tomków J., Łabanowski J.: The tendency to form cold cracks at the S420G2+M steel joints welded under water using wet method (in Polish). Przegląd Spawalnictwa (Welding Technology Review), 10 (2013).
  • 10. Maksimov S.Y.: Underwater arc welding of higher strength low-alloy steels. Welding International, 6 (2010).
  • 11. Omajene J.E., Martikainen J., Wu H., Kah P.: Optimization of underwater wet welding process parameters using neural network. International Journal of Mechanical and Materials Engineering, 1 (2014).
  • 12. Ćwiek J.: Hydrogen degradation of weldable high strength steels (in Polish). Gdansk Univ. Of Technology, Gdańsk 2006.
  • 13. Garašić I., Kralj S., Kožuh Z., Pacak M.: Analysis of underwater repair technology on the jack-up platform spud can. Brodogradnja, 2 (2010).
  • 14. Fydrych D., Łabanowski J., Rogalski G., Haras J., Tomków J., Świerczyńska A., Jakóbczak P., Kostro Ł.: Weldability of S500MC steel in underwater conditions. Advances in Materials Science, 2 (2014).
  • 15. Fydrych D., Kozak T.: Underwater welded joint properties investigation. Advances in Materials Science, 4 (2009).
  • 16. Sharp J.V., Billingham J., Robinson M.J.: The risk management of high-strength steels in jack-ups in seawater. Marine Structures, 14 (2001)
  • 17. PN-EN ISO 17642-2:2005 Destructive tests on welds in metallic materials - Cold cracking tests for weldments - Arc welding processes - Part 2: Self-restraint tests
  • 18. Kurji R., Coniglio N.: Towards the establishment of weldability test standards for hydrogen-assisted cold cracking. The International Journal of Advanced Manufacturing Technology, 77 (2015).
  • 19. Kannengiesser T., Boellinghaus T.: Cold cracking tests-an overview of present technologies and applications. Welding in the World, 1 (2013).
  • 20. PN-EN 10225:2011 Weldable structural steels for fixed offshore structures - Technical delivery conditions.
  • 21. PN-EN ISO 17637:2011 Non-destructive testing of welds. Visual testing of fusion-welded joints
  • 22. PN-EN ISO 3452-1:2013-08 Non-destructive testing -- Penetrant testing -- Part 1: General principles
  • 23. PN-EN ISO 17639:2013-12 Destructive tests on welds in metallic materials - Macroscopic and microscopic examination of welds
  • 24. PN-EN ISO 9015-1:2011 Non-destructive testing of welds. Hardness testing. Part 1.
  • 25. PN-EN ISO 15614-1:2008 Specification and qualification of welding procedures for metallic materials -Welding procedure test - Arc and gas welding of steels and arc welding of nickel and nickel alloys.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e30a1343-08a0-4bc9-b0b0-5940c9001049
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.