PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design of photonic crystal horn antenna for transverse electric modes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, by modifying defects in a photonic crystal lattice, a two-dimensional photonic crystal horn antenna is designed. The photonic crystal used for this purpose is composed of a hexagonal lattice of circular holes in a dielectric slab. The results of this paper allow us to design a photonic crystal antenna capable of separating TE and TM modes. The designed structure has a very simple design that allows low cost fabrication. The structure is numerically simulated using a finite-difference time-domain (FDTD) method. Its wide bandwidth, its low loss and the ability to transmit waves at a terahertz frequency range are the antenna’s main advantages. The return loss for the frequency range of 180 to 215 THz is from –6.63 to –28.3 dB. Moreover, a 35 THz bandwidth is obtained for this structure.
Czasopismo
Rocznik
Strony
401--413
Opis fizyczny
Bibliogr. 53 poz., rys.
Twórcy
  • Faculty of electrical and computer engineering, Semnan University, Semnan, Iran
  • Faculty of electrical and computer engineering, Semnan University, Semnan, Iran
autor
  • Faculty of electrical and computer engineering, Semnan University, Semnan, Iran
Bibliografia
  • [1] MEADE R.D., BROMMER K.D., RAPPE A.M., JOANNOPOULOS J.D., Photonic bound states in periodic dielectric materials, Physical Review B 44(24), 1991, p. 13772(R), DOI:10.1103/PhysRevB.44.13772.
  • [2] JOANNOPOULOS J.D., MEADE R.D.,WINN J.N., Photonic Crystals, Princeton University Press, NJ, 1995.
  • [3] JOANNOPOULOS J.D., VILLENEUVE P.R., FAN S., Photonic crystals: putting a new twist on light, Nature 386, 1997, pp. 143–149, DOI:10.1038/386143a0.
  • [4] HO K.M., CHAN C.T., SOUKOULIS C.M., Existence of a photonic gap in periodic dielectric structures, Physical Review Letters 65(25), 1990, p. 3152, DOI:10.1103/PhysRevLett.65.3152.
  • [5] RUSSER P., FICHTNER N., Nanoelectronics in radio-frequency technology, IEEE Microwave Magazine 11(3), 2010, pp. 119–135, DOI:10.1109/MMM.2010.936077.
  • [6] JORNET J.M., AKYILDIZ I.F., Graphene-based plasmonic nano-antenna for terahertz band communication in nanonetworks, IEEE Journal on Selected Areas in Communications 31(12), 2013, pp. 685–694, DOI:10.1109/JSAC.2013.SUP2.1213001.
  • [7] BURKE P.J., LI S., YU Z., Quantitative theory of nanowire and nanotube antenna performance, IEEE Transactions on Nanotechnology 5(4), 2006, pp. 314–334, DOI:10.1109/TNANO.2006.877430.
  • [8] JOANNOPOULOS J.D., JOHNSON S.G., WINN J.N., MEADE R.D., Photonic Crystal Molding Flow of Light, Princeton University Press, Princeton, NJ, USA, 2008.
  • [9] MORADI M., DANAIE M., OROUJI A.A., Design and analysis of an optical full-adder based on nonlinear photonic crystal ring resonators, Optik 172, 2018, pp. 127–136, DOI:10.1016/j.ijleo.2018.07.016.
  • [10] DANAIE M., GERAVAND A., MOHAMMADI S., Photonic crystal double-coupled cavity waveguides and their application in design of slow-light delay lines, Photonics and Nanostructures – Fundamentals and Applications 28, 2018, pp. 61–69, DOI:10.1016/j.photonics.2017.11.009.
  • [11] KHANI S., DANAIE M., REZAEI P., Double and triple-wavelength plasmonic demultiplexers based on improved circular nanodisk resonators, Optical Engineering 57(10), 2018, article 107102, DOI:10.1117/1.OE.57.10.107102.
  • [12] SHARKAWY A., SHI S., PRATHER D.W., SOREF R.A., Electro-optical switching using coupled photonic crystal waveguides, Optics Express 10(20), 2002, pp. 1048–1059, DOI:10.1364/OE.10.001048.
  • [13] DANAIE M., KAATUZIAN H., Design of a photonic crystal differential phase comparator for a Mach–Zehnder switch, Journal of Optics 13(1), 2010, article 015504, DOI:10.1088/2040-8978/13/1/015504.
  • [14] ZHANG X., HOSSEINI A., LIN X., SUBBARAMAN H., CHEN R.T., Polymer-based hybrid-integrated photonic devices for silicon on-chip modulation and board-level optical interconnects, IEEE Journal of Selected Topics in Quantum Electronics 19(6), 2013, pp. 196–210, article 3401115, DOI:10.1109/JSTQE.2013.2268386.
  • [15] YU J., ZENG H., LUI H., SKIBINA J.S., STEINMEYER G., TANG S., Characterization and application of chirped photonic crystal fiber in multiphoton imaging, Optics Express 22(9), 2014, pp. 10366–10379, DOI:10.1364/OE.22.010366.
  • [16] ZHANG X., HOSSEINI A., SUBBARAMAN H., WANG S., ZHAN Q., LUO J., JEN A.K.Y., CHEN R.T., Integrated photonic electromagnetic field sensor based on broadband bowtie antenna coupled silicon organic hybrid modulator, Journal of Lightwave Technology 32(20), 2014, pp. 3774–3784, DOI:10.1109/JLT.2014.2319152.
  • [17] GERAVAND A., DANAIE M., MOHAMMADI S., All-optical photonic crystal memory cells based on cavities with a dual-argument hysteresis feature, Optics Communications 430, 2019, pp. 323–335, DOI:10.1016/j.optcom.2018.08.052.
  • [18] DANAEI M., KAATUZIAN H., Design and simulation of an all-optical photonic crystal AND gate using nonlinear Kerr effect, Optical and Quantum Electronics 44(1–2), 2012, pp. 27–34, DOI:10.1007/s11082-011-9527-y.
  • [19] ZHANG X., WANG Y., SUN J., LIU D., HUANG D., All-optical AND gate at 10 Gbit/s based on cascaded single-port-coupled SOAs, Optics Express 12(3), 2004, pp. 361–366, DOI:10.1364/OPEX.12.000361.
  • [20] FAN Z., LI S., LIU Q., AN G., CHEN H., LI J., CHAO D., LI H., ZI J., TIAN W., High sensitivity of refractive index sensor based on analyte-filled photonic crystal fiber with surface plasmon resonance, IEEE Photonics Journal 7(3), 2015, article 4800809, DOI:10.1109/JPHOT.2015.2432079.
  • [21] RIFAT A.A., MAHDIRAJI G.A., SUA1 Y.M., SHEE Y.G., AHMED R., CHOW D.M., ADIKAN F.R.M., Surface plasmon resonance photonic crystal fiber biosensor: a practical sensing approach, IEEE Photonics Technology Letters 27(15), 2015, pp. 1628–1631, DOI:10.1109/LPT.2015.2432812.
  • [22] RIFAT A.A., AHMED R., MAHDIRAJI G.A., ADIKAN F.R.M., Highly sensitive D-shaped photonic crystal fiber-based plasmonic biosensor in visible to near-IR, IEEE Sensors Journal 17(9), 2017, pp. 2776–2783, DOI:10.1109/JSEN.2017.2677473.
  • [23] SI L.M., LIU Y., LU H.D., SUN H.J., LV X., ZHU W., Experimental realization of high transmittance THz 90°-bend waveguide using EMXT structure, IEEE Photonics Technology Letters 25(5), 2013, pp. 519–522, DOI:10.1109/LPT.2013.2244878.
  • [24] ZHAO Y., GRISCHKOWSKY D.R., 2-D terahertz metallic photonic crystals in parallel-plate waveguides, IEEE Transactions on Microwave Theory and Techniques 55(4), 2007, pp. 656–663, DOI:10.1109/TMTT.2007.892798.
  • [25] WITHAYACHUMNANKUL W., YAMADA R., FUJITA M., NAGATSUMA T., All-dielectric rod antenna array for terahertz communications, APL Photonics 3(5), 2018, article 051707, DOI:10.1063/1.5023787.
  • [26] WITHAYACHUMNANKUL W., FUJITA M., NAGATSUMA T., Integrated silicon photonic crystals toward terahertz communications, Advanced Optical Materials 6(16), 2018, article 1800401, DOI:10.1002/adom.201800401.
  • [27] FURUKADO Y., ABE H., HINAKURA Y., BABA T., Experimental simulation of ranging action using Siphotonic crystal modulator and optical antenna, Optics Express 26(14), 2018, pp. 18222–18229, DOI:10.1364/OE.26.018222.
  • [28] FREI W.R., TORTORELLI D.A., JOHNSON H.T., Topology optimization of a photonic crystal waveguide termination to maximize directional emission, Applied Physics Letters 86(11), 2005, article 111114, DOI:10.1063/1.1885170.
  • [29] DANAIE M., KAATUZIAN H., Improvement of power coupling in a nonlinear photonic crystal directional coupler switch, Photonics and Nanostructures – Fundamentals and Applications 9(1), 2011, pp. 70–81, DOI:10.1016/j.photonics.2010.10.002.
  • [30] DANAIE M., ATTARI A.R., MIRSALEHI M.M., NASEH S., Optimization of Two Dimensional Photonic Crystal Waveguides for TM polarization, [In] EUROCON 2007 – The International Conference on “Computer as a Tool”, Warsaw, 2007, pp. 1218–1222, DOI:10.1109/EURCON.2007.4400488.
  • [31] DANAIE M., NASIRI-FAR R., DIDEBAN A., Design of a high-bandwidth Y shaped photonic crystal power splitter for TE modes, International Journal of Optics and Photonics 12(1), 2018, pp. 33–42, DOI:10.29252/ijop.12.1.33.
  • [32] BROWN E.R., PARKER C.D., YABLONOVITCH E., Radiation properties of a planar antenna on a photonic-crystal substrate, Journal of the Optical Society of America B 10(2), 1993, pp. 404–407, DOI:10.1364/JOSAB.10.000404.
  • [33] SERIER C., CHEYPE C., CHANTALAT R., THEVENOT M., MONEDIERE T., REINEX A., JECKO B., 1-D photonic bandgap resonator antenna, Microwave and Optical Technology Letters 29(5), 2001, pp. 312–315, DOI:10.1002/mop.1164.
  • [34] CHEYPE C., SERIER C., THEVENOT M., MONEDIERE T., REINEIX A., JECKO B., An electromagnetic bandgap resonator antenna, IEEE Transactions on Antennas and Propagation 50(9), 2002, pp. 1285–1290, DOI:10.1109/TAP.2002.800699.
  • [35] BISWAS R., OZBAY E., TEMELKURAN B., BAYINDIR M., SIGALAS M.M., HO K.M., Exceptionally directional sources with photonic-bandgap crystals, Journal of the Optical Society of America B 18(11), 2001, pp. 1684–1689, DOI:10.1364/JOSAB.18.001684.
  • [36] RAJO-IGLESIAS E., QUEVEDO-TERUEL Ó., INCLAN-SANCHEZ L., Mutual coupling reduction in patch antenna arrays by using a planar ebg structure and a multilayer dielectric substrate, IEEE Transactions on Antennas and Propagation 56(6), 2008, pp. 1648–1655, DOI:10.1109/TAP.2008.923306.
  • [37] BROWN E.R., PARKER C.D., YABLONOVITCH E., Radiation properties of a planar antenna on a photonic-crystal substrate, Journal of the Optical Society of America B 10(2), 1993, pp. 404–407, DOI:10.1364/JOSAB.10.000404.
  • [38] GONZALO R., EDERRA I., MANN C.M., DE MAAGT P., Radiation properties of terahertz dipole antenna mounted on photonic crystal, Electronics Letters 37(10), 2001, pp. 613–614, DOI:10.1049/el:20010435.
  • [39] EDERRA I., GONZALO R., ALDERMAN B.E.J., HUGGARD P.G., DE HON B.P., VAN BEURDEN M.C., MURK A., MARCHAND L., DE MAAGT P., Sub-millimeter-wave imaging array at 500 GHz based on 3-D electromagnetic-bandgap material, IEEE Transactions on Microwave Theory and Techniques 56(11), 2008, pp. 2556–2565, DOI:10.1109/TMTT.2008.2005926.
  • [40] KESLER M.P., MALONEY J.G., SHIRLEY B.L., SMITH G.S., Antenna design with the use of photonic band-gap materials as all-dielectric planar reflectors, Microwave and Optical Technology Letters 11(4), 1996, pp. 169–174, DOI:10.1002/(SICI)1098-2760(199603)11:4%3C169::AID-MOP1%3E3.0.CO;2-I.
  • [41] SMITH G.S., KESLER M.P., MALONEY J.G., Dipole antennas used with all-dielectric, woodpile photonic-bandgap reflectors: gain, field patterns, and input impedance, Microwave and Optical Technology Letters 21(3), 1999, pp. 191–196, DOI:10.1002/(SICI)1098-2760(19990505)21:3%3C191::AID-MOP10%3E3.0.CO;2-L.
  • [42] ZHAO Z., DENG Q., XU H., DU C., LUO X., A sectoral horn antenna based on the electromagnetic band-gap structures, Microwave and Optical Technology Letters 50(4), 2008, pp. 965–969, DOI:10.1002/mop.23254.
  • [43] WEILY A.R., ESSELLE K.P., SANDERS B.C., Photonic crystal horn and array antennas, Physical Review E 68(1), 2003, article 016609, DOI:10.1103/PhysRevE.68.016609.
  • [44] MOORE R.L., KESLER M.P., MALONEY J.G., SHIRLEY B.L., Electromagnetic antenna and transmission line utilizing photonic bandgap material, US Patent 5689275, 1997.
  • [45] WEILY A.R., ESSELLE K.P., SANDERS B.C., BIRD T.S., High-gain 1D EBG resonator antenna, Microwave and Optical Technology Letters 47(2), 2005, pp. 107–114, DOI:10.1002/mop.21095.
  • [46] WEILY A.R., ESSELLE K.P., SANDERS B.C., Layer-by-layer photonic crystal horn antenna, Physical Review E 70(3), 2004, article 037602, DOI:10.1103/PhysRevE.70.037602.
  • [47] WEILY A.R., ESSELLE K.P., BIRD T.S., SANDERS B.C., Linear array of woodpile EBG sectoral horn antennas, IEEE Transactions on Antennas and Propagation 54(8), 2006, pp. 2263–2274, DOI:10.1109/TAP.2006.879181.
  • [48] LIANG M., WU Z., NG W.R., GEHM M., XIN H., Electromagnetic crystal (EMXT) based terahertz horn antenna, [In] 2013 7th European Conference on Antennas and Propagation (EuCAP), Gothenburg, 2013, pp. 739–740.
  • [49] COLAK E., SEREBRYANNIKOV A.E., OZGUR CAKMAK A., OZBAY E., Experimental study of broadband unidirectional splitting in photonic crystal gratings with broken structural symmetry, Applied Physics Letters 102(15), 2013, article 151105, DOI:10.1063/1.4800147.
  • [50] KHROMOVA I., EDERRA I., TENIENTE J., GONZALO R., ESSELLE K.P., Evanescently fed electromagnetic band-gap horn antennas and arrays, IEEE Transactions on Antennas and Propagation 60(6), 2012, pp. 2635–2644, DOI:10.1109/TAP.2012.2194633.
  • [51] FOGHANI S., KAATUZIAN H., DANAIE M., Simulation and design of a wideband T-shaped photonic crystal splitter, Optica Applicata 40(4) 2010, pp. 863–872.
  • [52] KAATUZIAN H., DANAIE M., FOGHANI S., Design of a high efficiency wide-band 60 degree Y-branch for TE polarization, [In] 2009 14th Opto Electronics and Communications Conference, Vienna, 2009, pp. 1–2, DOI:10.1109/OECC.2009.5215096.
  • [53] DANAIE M., ATTARI A.R., MIRSALEHI M.M., NASEH S., Design of a high efficiency wide-band 60° bend for TE polarization, Photonics and Nanostructures – Fundamentals and Applications 6(3–4), 2008, pp. 188–193, DOI:10.1016/j.photonics.2008.08.003.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e30754b5-92af-41a4-9d4e-357427b47b8b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.