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Abstract: Collector selection is a critical step in flotation, as it has a direct impact on product quality, 

flotation recovery, and selectivity. Collectors can consist of different components, and their effectiveness 

can vary depending on the type of ore being processed. The general practice in both literature and in 

industry is to use a mixture of collectors rather than a single collector. However, the use of a collector 

mixture introduces several complex issues. It is challenging to determine the specific effects of each 

collector on different minerals, as well as to understand the synergistic effects of mixed collectors in 

flotation. This study presents a novel investigation focusing on the impact of blends of NAX, 

AEROPHINE® 3422, and AERO® MX 5149, in varying dosages and combinations, on the flotation 

performance of Kupferschiefer copper ore. Kinetics flotation tests were conducted using a mechanical 

flotation cell with various combinations and dosages of listed collectors. For this investigation, different 

predictive models such as machine-learning (ML) and conventional regression analyses were 

developed. For model construction, a database including the results of comprehensive experimental 

results was constructed. The best performing model was selected considering statistical performance 

indicators and their performance on unseen data. A sensitivity analysis was conducted on the model to 

justify contributions of collectors on the copper recovery and grade. The results showed that the ML-

based models provide compatible results with the expert opinions and have higher statistical 

performance than conventional modelling tools. According to the experimental results and models’ 

findings, it has shown that AEROPHINE® 3422 (a blend of isopropyl ethyl thionocarbamate and 

dithiophosphinate) was the most influential collector for the copper recovery. In addition, two ternary 

graphs were generated from the modeled data to formulate mixtures for different grades and recovery 

priorities. 
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1. Introduction 

Various factors affect a flotation system, such as mineralogy (i.e., ore type, mineralogical composition, 

liberation degree), operational (i.e., flow rates of feed, gas tailings, froth level, slurry density, circuit 

design), and chemical (i.e., types and dosages of flotation reagents) factors (Klimpel and Hansen, 1988; 

Drzymala, 2007; Kawatra, 2011; Wills, 2016). It is important to control all these variables during a 

flotation process, and metallurgists must deal with the uncertainty created by these variables. 

Chemistry plays a central role in flotation systems (Klimpel and Hansen, 1988). Flotation reagents fall 

into three main categories: collectors, frothers, and modifiers. Collectors, in particular, include a wide 

range of organic chemical compounds with different chemical functionalities (Bulatovic, 2007). The 

primary objective of collectors is to create a water-repellent surface on targeted mineral particles within 

the slurry, enabling proper interaction between hydrophobic particles and air bubbles to transfer these 

particles to a froth phase (Drzymala, 2007; Kowalczuk et al., 2015). The most widely used collectors in 

copper sulfide flotation are xanthates, thionocarbamates, and dithiophosphates, (Bulatovic, 2007; 

Fuerstenau et al., 2007; Drzymala, 2007; Wills, 2016; Nagaraj and Farinato, 2016). All these collector 

groups have different strength and selectivity properties on different mineral surfaces, as well as 
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different prices and environmental impacts. Many studies in the literature acknowledge that using 

different combinations of these collectors improves the flotation efficiency, even though the 

mechanisms between collectors are not fully explained in real-ore flotation apart from single collector-

single mineral systems (Rao and Forssberg, 1997; Sheridan et al., 2002; Lotter and Bradshaw, 2010; 

Guner et al 2024). Selection of a type of collector and optimization of a dosage are crucial for flotation 

outcomes in both industrial and batch scales (Nagaraj, 2005). In batch scales, determining the collector 

with the highest performance can serve as both an early study for a resource project and an 

improvement for current flotation plants, leading to the maximization of recovery, grade, kinetics, and 

selectivity of the process (Greet, 2010; Thompson, 2016). 

The general methodology for selecting the appropriate collector involves characterizing the feed 

material based on its mineralogical, chemical, and physical properties. Lab-scale flotation tests should 

be designed and conducted using different types of selected reagents based on the mineralogical 

composition of a feed material (Nagaraj and Ravishankar, 2007). Different dosages of collectors should 

be tested to achieve the highest recovery and grade without overdosing the system (Nagaraj, 2005). 

Statistical tools can be employed to identify trends and investigate the relationship between collector 

types, dosages, and recovery. Given the complex nature of the flotation process, additional statistical 

methods and advanced modeling approaches have been utilized to assist metallurgists in decision-

making (Gholami et al., 2022).  Design of an Experiment (DoE) is one of the most common tools for 

reagent optimization (Vazifeh et al., 2010; Napier-Munn, 2014; Corpas-Martínez et al., 2019; Azizi et al., 

2020). Arancibia-Bravo et al. (2022) have compiled a comprehensive list of 24 Response Surface 

Methodology (RSM)-based DoE studies involving various experimental methods and ores. The main 

limitation of DoE is its lack of flexibility to accommodate external interventions. Initial levels of 

parameters must be predetermined, meaning that all parameter levels must be established before 

conducting the experiments, but it significantly reduces number of experiments. Machine learning (ML) 

models offer more applicability due to their flexibility in data collection. The construction of a consistent 

database is crucial for model development. Typically, these data are gathered during industrial 

activities (Saravani et al., 2014; Allahkarami et al., 2017), and some experimental databases are also 

suitable for running ML models for flotation process (Cook et al., 2020; Çilek, 2002). Furthermore, ML-

based models allow the addition of new data to modify and upgrade an existing model in order to 

extend the data range and increase the accuracy.  Table 1 presents the examples of modeling studies 

using ML-based models for copper flotation. It is important to emphasize that neither DoE nor ML 

models aim to explain mechanisms at a fundamental level, even though they are powerful tools for 

prediction and optimization. 

Table 1.  Literature summary of machine learning-based models used in copper sulfide flotation. 

Algorithm Inputs Outputs Scale References 

Artificial Neural 

Networks (ANN) 

pH, pulp density, liberation 

degree and particle size 

distribution of feed and 

middling, grade of feed, 

flotation times 

Grade and 

mass pull of 

concentrate and 

tailing 

Batch (Çilek, 2002) 

Artificial Neural 

Networks (ANN) and 

Multivariate Non-Linear 

Regression (MNLR); 

Froth height, gas hold-up, 

frother dosage, collector 

dosage, wash water flow rate, 

air flow rate, and grades of 

products. 

Grade and 

recovery 

Pilot (Nakhaei, et 

al., 2012) 

Fuzzy model Gas velocity, pulp density, 

frother dosage, and type 

Concentrate 

grade and 

recovery 

Industrial  (Saravani et 

al., 2014) 

Neural Networks Feed grade, collector dosage, 

frother dosage, particle size 

distribution, pulp density 

Recovery and 

enrichment 

ratio 

Industrial  (Massinaei et 

al., 2014 

Neural Networks Gas flow rate, slurry density, Recovery and Batch (Jahedsaravani 
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frother dosage, collector 

dosage, pH 

grade, mass 

pull, mean 

bubble size 

et al., 2014) 

Hybrid genetic algorithm 

– artificial neural network 

(GA-ANN) 

pH, collector and frother 

dosage, fuel oil dosage, slurry 

density, moisture percent, 

particle size distribution, feed 

grades 

Recovery and 

grade 

Industrial  (Allahkarami 

et al., 2017) 

Multilayer perceptron 

ANN; support vector 

machine (SVM); M5Prime 

model tree algorithm; RF 

and the firefly algorithm. 

Collector dosage, frother 

dosage, depressant types and 

dosage, pH, impeller speed, air 

flowrate 

Recovery and 

grade 

Batch (Cook et al., 

2020) 

The primary aim of this study was to evaluate how the flotation efficiency of Kupferschiefer copper 

ore was influenced by the type and amount of collectors used, specifically NAX (a mixture of sodium 

isobutyl xanthate and sodium ethyl xanthate),  AEROPHINE® 3422 (a mixture based on isopropyl ethyl 

thionocarbamate and dithiophosphinate) and AERO® MX 5149 (a mixture based on reaction mass of S-

allyl O-(2-methyl butyl) dithiocarbonate and S-allyl O-pentyl dithiocarbonate, and n-butoxycarbonyl-

O-n-butyl thionocarbamate. Additionally, the study sought to understand effects of mixtures of these 

collectors. This study deliberately limited the operational and equipment-based parameters of a 

flotation system, focusing solely on collectors. Other chemical parameters, such as pH, Eh, frother type 

and dosage, were not included in the study to remain consistent with the processing conditions at the 

Polkowice Copper Concentrator (KGHM Polska Miedz S.A.), where the material came from. A 

secondary objective was to explore the application of machine learning modeling to flotation studies 

and compare its efficacy with conventional regression analyses, within the context of a narrowly defined 

scope of parameters (specifically, the collector system for this study). It is worth mentioning that this 

study did not aim to compare DoE with ML approaches. All models were developed using existing 

data. 

2. Experimental studies 

2.1. Material and reagents 

This research utilized a copper sulfide ore sourced from the Kupferschiefer deposit, obtained from the 

Polkowice-Sieroszowice Copper Plant operated by KGHM Polska Miedz S.A, Poland. Elemental 

analyses of feed, concentrate, and tailings were performed using Inductively Coupled Plasma Mass 

Spectrometry (ICP-MS) at both ALS Scandinavia and the Chemical/Mineralogical Laboratory (IGP, 

Department of Geoscience and Petroleum, NTNU), Portable X-ray Fluorescence Analyzers (pXRF, 

Thermal Science, XL3t) at NTNU Mineral Processing Laboratory and LECO - Infrared Spectroscopy (IR) 

at ALS Scandinavia. The elemental composition of the feed is presented in Table 2.  

Table 2. Elemental analyses of feed material with analytical tools 

Element Content Unit Method 

Cu 1.8 % HNO3 digestion followed by ICP-MS  

Ag 40 ppm HNO3 digestion followed by ICP-MS 

Fe 1.1 % HNO3 digestion followed by ICP-MS 

Pb 1455 ppm Four acid digestion followed by ICP-AES 

Zn 400 ppm Four acid digestion followed by ICP-AES measurement 

Ni 43 ppm Four acid digestion followed by ICP-AES measurement 

As 119 ppm Aqua regia digestion followed by ICP-MS measurement 

Si 11.1 % HNO3 digestion followed by ICP-MS 

S 1.3 % Total sulfur (IR Spectroscopy) by LECO 

C 6.1 % Total carbon (IR Spectroscopy) by LECO 
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A laboratory-scale ball mill was used for wet grinding, with a solid ratio of 55% by weight, to reduce 

the particle size. The particle size distribution of the ground material was then obtained using the 

Malvern Panalytical Mastersizer 3000, as shown in Fig. 1. The size of the feed material decreased from 

a d80 of 1.3 mm to a d80 of 45 µm after grinding. Additionally, as shown in Fig. 1, the d50 and d30 sizes of 

the ground material were approximately 15 µm and 8 µm, respectively. 

 
Fig. 1. Particle size distribution of ground material for flotation test 

 The following chemicals were used as collectors: AEROPHINE® 3422 PROMOTER (a blend of 

isopropyl ethyl thionocarbamate and dithiophosphinate), AERO® MX-5149 PROMOTER (reaction mass 

of S-allyl O-(2-methyl butyl) dithiocarbonate, S-allyl O-pentyl dithiocarbonate, and n-Butoxycarbonyl-

O-n-butyl thionocarbamate), and NAX (a blend of sodium isobutyl xanthate and sodium ethyl 

xanthate). AEROPHINE® 3422 PROMOTER and AERO® MX-5149 PROMOTER were provided by 

Solvay S.A., and NAX (Minova-Ksante, Sp. z o.o,) was provided by KGHM Polska Miedz S.A. 

Additionally, Nasforth 245 (a type of polyethylene glycol butyl ether with the formula 

C4H9(C2H5O)nOH, where n ranges from 2 to 5), and a frother from NASACO (provided by KGHM 

Polska Miedz S.A.), were also used in the flotation experiments. 

2.2. Flotation tests 

Kinetic flotation tests were carried out using an MMS (Maelgwyn Mineral Services) mechanical 

laboratory cell (1 dm3) over specific intervals, with concentrates being collected at the 1st, 3rd, 7th, 15th, 

and 30th min. A pulp level was maintained consistently using wash water that had the same 

concentration of frother by volume with the initial slurry. The weights of the products were recorded, 

and the copper (Cu) content was analyzed using portable X-ray fluorescence (pXRF). The recovery for 

each time interval was calculated using Eq. 1: 

𝑅 =
𝐶𝑐

𝐹𝑓 
%                                                                                         (1) 

where 'C' represents a concentrate weight, 'c' the Cu content in the concentrate, 'F' the final weight of all 

products, and 'f' the calculated head grade of Cu content in all products. The initial solid ratio of the 

slurry was fixed at 30% and prepared using tap water. The material's own pH (between 7.9 and 8.1) was 

consistently maintained for each test. The pH levels of the slurry were continually monitored using a 

WTW ProfiLine pH 3110 Portable Meter. The initial dosage of the frother for both the slurry and wash 

water was set at 15 mg/dm3. The constant conditions applied across all tests are detailed in Table 3. The 

collectors used were labeled as NAX (R1), AEROPHINE® 3422 (R2), and AERO® MX-5149 (R3). Details 

about the combinations and dosages of these collector mixtures are provided in Table 4. The initial 

dosages of each reagent were determined based on a literature review and prior experimental work 

conducted at the NTNU Mineral Processing Lab. The first 20 tests of the experimental work were taken 

from a previous study that included a Central Composite Design (CCD), an example of a Design of 

Experiment (DoE) application for mixtures (D1-D20 in Table 4). This included six repetitions at the 

central levels of the factors (D1, D3, D4, D8, D14, D17). Subsequently, additional tests were added with 
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varying dosages and combinations (D21-42). This study does not to focus on optimization through CCD, 

and thus discussion on either superiority or limitations of CCD was not included.  

Table 3. Constant conditions 

Flotation time 1, 3, 7, 15 and 30 minutes 

Conditioning time 3 minutes for collector, 1 minute for frother 

Frother dosage 15 mg/dm3 

Agitator speed 1200 rpm 

Solid ratio of pulp 30% 

Cell volume 1 dm3 

Gas flowrate 4 dm3/min 

pH 7.9-8.1 

Table 4. Collector recipes 

Experiment 

code 

Collector dosage, g/Mg Experiment 

code 

Collector dosage, g/Mg 

R1 R2 R3 R1 R2 R3 

D1 20 10 10 D22 10 0 0 

D2 30 5 15 D23 20 0 0 

D3 20 10 10 D24 40 0 0 

D4 20 10 10 D25 120 0 0 

D5 30 15 5 D26 0 10 0 

D6 10 5 5 D27 0 20 0 

D7 30 5 5 D28 0 40 0 

D8 20 10 10 D29 0 120 0 

D9 10 15 15 D30 0 0 10 

D10 30 15 15 D31 0 0 20 

D11 10 15 5 D32 0 0 40 

D12 10 5 15 D33 0 0 120 

D13 20 10 0 D34 20 20 0 

D14 20 10 10 D35 20 0 20 

D15 20 10 20 D36 0 20 20 

D16 20 20 10 D37 10 0 30 

D17 20 10 10 D38 30 0 10 

D18 40 10 10 D39 0 10 30 

D19 0 10 10 D40 0 30 10 

D20 20 0 10 D41 10 30 0 

D21 0 0 0 D42 30 10 0 
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2.3. Flotation results 

The results of single collector tests (D22 to D33) are shown in the grade-recovery and kinetics curves for 

three reagents: R1: NAX (Fig. 2), R2: AEROPHINE® 3422 (Fig. 3), and R3: AERO® MX-5149 (Fig. 4). D21 

presents the results of the flotation test using only frother without a collector (collectorless flotation). 

The maximum recovery of Cu achieved was 44% with a Cu grade of 2.8% at the end of the 30-minute 

flotation period without a collector. The highest Cu content in this experiment was 5.8%, which was 

reached within 3 minutes. Thus, it can be concluded that flotation was not successful without a collector, 

but the floated material, which can be classified as natural hydrophobic, still carried low amounts of 

copper content. It could be a result of either entrainment or flotation of copper rich carbonaceous matter  

As shown in Fig 2., the use of 10 and 20 g/Mg of R1 (a mixture of sodium isobutyl xanthate and 

sodium ethyl xanthate resulted in relatively low flotation performance presented in the grade-recovery 

and kinetics curves. An increase in the collector’s dosage led to faster kinetics as well as higher recovery 

and grade. The highest results were achieved with a dosage of 120 g/Mg, resulting in 92% Cu recovery 

after 30-minute of flotation. Furthermore, there was a significant difference between Cu grades in the 

first concentrates at 40 g/Mg and 120 g/Mg, which were 15% and 22%, respectively, although the 

kinetics curves were similar. 

 

Fig. 2. (a) Grade-recovery and (b) kinetics curves of flotation tests with using NAX (R1) 

 

Fig. 3. (a) Grade-recovery and (b) kinetics curves of flotation tests with using AEROPHINE® 3422 (R2) 

(a) (b) 

(a) (b) 
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In the single collector flotation system, R2 (AEROPHINE® 3422, thionocarbamate and sodium 

dithiophosphinate mixture) showed better performance than the other two reagents in low dosages. 

According to Fig. 3, the result of the test using 10 g/Mg R2 resulted in the concentrate containing almost 

the same amount of Cu (ca. 16%) in the 1st minute of flotation as the test using 120 g/Mg R2. All the 

grade-recovery curves of different dosages of R2 are very close to each other. As expected, higher 

dosages (40 and 120 g/Mg) resulted in slightly faster kinetics. 

 

Fig. 4. (a) Grade-recovery and (b) kinetics curves of flotation tests with using AERO® MX-5149 PROMOTER (R3) 

AERO® MX-5149 PROMOTER (R3) had quite similar results with R1. 10 and 20 g/Mg were not 

enough dosages to perform an average flotation performance. As the dosage increased, grade, recovery, 

and kinetics all increased significantly. The performances of D32 (40 g/Mg) and D33 (120 g/Mg) were 

much higher than D30 and D31. It was also observed that kinetics curves reached a plateau after 15 

mins. The grade-recovery curve shifted from a vertical to a more horizontal position depending the on 

increase in dosages. 

In addition to single reagents, a binary collector system was also tested using proportions of 100:0, 

75:25, 50:50, 25:75, and 0:100 for blends of R1-R2, R1-R3, and R2-R3. The results of these tests are shown 

in Fig. 5. This comparison was performed at 40 g/Mg because of the large number of data for this 

dosage. According to the results, the binary collector system generally resulted in better outcomes than 

the single collector system with the same dosage. In terms of the mixture of R1 and R2, the mass ratio 

that appeared to provide a good balance of high grade and high recovery was at 75:25. At this ratio, 

both grade and recovery were relatively high after 30 min of flotation. However, it is important to note 

that the results were very close to each other, indicating that experimental error played a significant role 

in these tests, especially over longer flotation times. The most optimal combination for R2 and R3 was 

50:50 in terms of both grade and recovery, but the results became more similar for this blend over 

extended flotation times, similar to R1:R2. An opposite trend between grade and recovery was observed 

for the mixture of R1 and R3. The highest recovery was obtained with a 25:75 ratio of R1:R3, while the 

situation was completely reversed for grade, with 75:25 obtaining the highest grade. The highest 

recoveries for the 50:50 mixture of R2 and R3 were 57%, 72%, 83%, 88%, and 92% for 1, 3, 7, 15, and 30-

minute flotation intervals, respectively. The corresponding copper grades were 24%, 16%, 8%, 6%, and 

5%, respectively.  

Similar to the flotation experiments with binary collector mixtures, using mixtures of three reagents 

yielded more favorable outcomes than utilizing single collectors. Overall, the highest recoveries and 

grades for the first three concentrates were achieved in tests with a ternary collector mixture, specifically 

in D10 (30 g/Mg R1, 15 g/Mg R2, and 15 g/Mg R3) and D16 (20 g/Mg R1, 20 g/Mg R2, and 10 g/Mg 

R3). Since 15 and 30 minutes represent very long flotation times under the conditions introduced in 

Table 3, it was more straightforward to analyze the differences in results caused by the collectors using 

the first three concentrates. The trend of higher dosages correlating with higher recovery and grade was  

(a) (b) 
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Fig. 5. Cu recovery and grade of binary collector mixture by time (R1: NAX, R2: AEROPHINE® 3422, R3: AERO® 

MX-5149 PROMOTER, the total dosage of each blend is 40 g/Mg) 

Table 5. Results of experiments conducted with ternary mixtures (for recipes see Table 4) (Rec.: Cu-recovery, %) 

Experiment 

code 

1 min 3 mins 7 mins 15 mins 30 mins 

Rec. 

% 

Grade 

% 

Rec. 

% 

Grade 

% 

Rec. 

% 

Grade 

% 

Rec. 

% 

Grade 

% 

Rec. 

% 

Grade 

% 

D1 54.9 20.6 71.8 13.4 79.8 9.2 85.9 6.4 90.2 4.8 

D2 57.5 21.5 70.7 15.3 79.8 10.1 85.7 6.9 89.8 5.2 

D3 53.6 20.7 68.4 14.2 77.9 9.9 83.5 7.2 88.8 5.6 

D4 52.8 14.7 67.7 14.7 79.4 9.1 85.9 5.0 89.7 5.0 

D5 57.3 22.0 72.5 15.6 79.7 11.3 86.2 7.5 90.6 5.5 

D6 45.4 22.2 62.5 15.3 75.7 9.0 83.5 6.3 87.9 4.9 

D7 51.1 23.7 66.0 16.0 76.1 11.2 84.0 7.0 88.7 5.4 

D8 53.2 21.0 70.0 15.3 78.6 11.0 85.9 7.0 89.9 5.2 

D9 58.8 21.2 71.0 15.1 81.4 9.2 87.3 6.7 90.5 5.5 

D10 59.2 22.9 76.4 15.5 82.8 10.4 87.6 7.2 91.4 5.5 

D11 53.1 21.4 71.6 14.4 79.6 9.5 86.1 6.5 90.2 5.0 

D12 57.0 19.2 70.5 14.8 79.2 10.1 86.4 6.5 89.8 5.3 

D14 53.0 20.0 70.6 12.9 80.8 9.1 85.7 6.5 90.7 4.8 

D15 57.2 22.0 71.1 14.9 78.0 10.4 85.6 6.9 89.6 5.4 

D16 60.0 21.9 73.0 15.5 82.6 9.4 87.9 6.9 91.5 5.3 

D17 56.2 21.6 70.6 13.7 81.0 8.4 86.7 5.9 90.9 4.5 

D18 58.2 23.3 74.8 15.9 82.3 10.2 88.0 7.0 91.5 5.5 
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consistent for the ternary mixture, similar to the singular and binary mixture systems. However, it was 

observed that achieving the same or higher grade and recovery was possible with a lower total dosage 

compared to the binary collector systems. For example, D17 (20 g/Mg R1, 10 g/Mg R2, and 10 g/Mg 

R3, totaling 40 g/Mg) achieved approximately 56% Cu recovery with a grade of about 22% in the first 

concentrate, whereas D30 (40 g/Mg R3) had a Cu content of approximately 15% and a recovery of about 

53%. It was also noted that the recovery increased for the ternary mixture, even though Cu grades were 

higher than the single collector system. 

Overall, the results showed that binary and ternary collector systems were generally better than the 

single collector resulting in improved grade, recovery. It is also necessary to highlight that the long 

flotation times maximized the recovery and made the evaluation of the results very difficult. Therefore, 

grade and recovery in the 1st, 3rd, and 7th minutes, which is for the first three concentrates, gave more 

meaningful results in order to evaluate the effects of the collector.  

3. Modeling 

3.1. Data preparation and model selection 

Inputs are defined as the amounts of the reagents (R1, R2, R3) and time (T), while the outputs of the 

models are defined as Cu grade and recovery. The statistical descriptions of input variables are 

presented in Table 6. Due to the lack of amount of data at certain levels, such as 120 g/Mg for 

experiments D25, D29, and D33, these experiments were excluded during the data preparation stage 

before modeling. The Cu-recovery % (Eq. 1) and Cu-grade % were assigned as outputs, and the structure 

of dataset is shown in Table 7. 

Table 6. Descriptive statistic of inputs 

Variable R1 R2 R3 T 

Total Count 190 190 190 190 

St. Dev 11.9 9.3 9.3 10.6 

Variance 141.3 87.2 87.2 111.9 

Min 0.0 0.0 0.0 1.0 

Q1 0.0 0.0 0.0 3.0 

Median 20.0 10.0 10.0 7.0 

Q3 20.0 15.0 15.0 15.0 

Max 40.0 40.0 40.0 30.0 

Table 7. Dataset structure 

 Inputs Outputs  

 

 

 

 

 

 

 

 

m=190, n=4 

mxn = [190,4] 

R1 

(n=1) 

R2 

(n=2) 

R3 

(n=3) 

T 

(n=4) 

Recovery 

(Cu) 

Grade 

(Cu) 

1 
      

2       

3       

.       

.       

.       

m       

3.1.1. Linear (LR) and nonlinear (NLR) regressions 

Linear regression is a technique used to model the relationship between a dependent variable and one 

or more independent variables by fitting a linear equation to the observed data. When the relationship 

between variables is too complex to be captured by a linear equation, non-linear regression is employed 

to model these intricate relationships (Bingham et al., 2010). Linear regression is widely used in various 
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fields such as economics, biology, engineering, and social sciences to understand and predict 

relationships between variables and it serves as a foundational tool for more complex statistical models 

(Gareth et al., 2021). However, its effectiveness relies on a critical assumption stating that the 

relationship between the predictor(s) (independent variables) and the response (dependent variable) 

must be approximately linear (Bingham et al., 2010).  

3.1.2. Random Forest (RF) 

The RF algorithm is based on the concept of 'ensemble learning,' which involves combining multiple 

decision trees to improve the overall performance. Introduced by Breiman (2001), the RF algorithm is 

versatile and can be used for both classification and regression tasks. It handles both categorical and 

continuous input features (independent variables). While the mathematical foundation of a single 

decision tree is straightforward, the RF algorithm is often considered a 'black box' model due to its 

complexity, involving a large number of trees (Hastie et al., 2009).  The RF algorithm constructs a 

function f(x) from a set of 'base learners' h1(x), …, hj(x) which are then combined to form the 'ensemble 

predictor' f(x). For regression problems, the final output is obtained by averaging the predictions from 

each tree in the model. The model's error can be evaluated using various criteria, but the mean squared 

error (MSE) is most commonly used. The model is trained until the MSE reaches its minimum value. In 

classification problems, predictions are determined by a majority vote. The RF model is trained until 

the splitting criterion, such as misclassification error, Gini index, or entropy, reaches its minimum 

(Cutler et al., 2012). Several hyperparameters can be adjusted to build a successful RF model. In this 

study, no changes were made to the hyperparameters of the RF model for several reasons: 

Firstly, the model's default configuration has already produced useful and satisfactory results, 

indicating that the current hyperparameter settings are effective for this task. Secondly, optimizing 

hyperparameters can be a lengthy process, involving extensive searching and tuning, often with 

numerous iterations needed to find the optimal parameters. Given the satisfactory performance of the 

current model, further optimization would not justify the additional time required. Additionally, 

hyperparameter optimization is computationally expensive, requiring significant resources that might 

not be readily available or could be better used elsewhere. By not tuning the hyperparameters, we save 

these resources while still maintaining a high-performing model. 

RF can be applied as both regression trees and classification trees in mining activities (Akyildiz et 

al., 2023). In this study, the dataset in Table 6 was split randomly, with 80% used for training and 20% 

for testing. Further, the training data was divided into five sets through K-fold, containing four for 

training and one for testing in each fold—a process known as "cross-validation”. The model with the 

highest accuracy from cross-validation was chosen. After testing with the reserved data and achieving 

satisfactory results, the final model was assessed using input values not present in the original dataset. 

The development process of the RF model is depicted in Fig. 6.  

3.1.3. Genetic Programming (GP) 

The GP is of the evolutionary algorithms that encompass various topics including genetic algorithms, 

evolutionary programming, evolution strategies and classifier systems. Evolutionary algorithms 

operate iteratively, with each iteration commonly referred to as a "generation." The basic evolutionary 

algorithm process starts with a population of randomly selected individuals. 

Specifically, the GP is an automated programming method that evolves computer programs to solve 

or approximately solve problems. It begins with thousands of randomly generated programs, which are 

then gradually evolved over numerous generations using principles such as the Darwinian concept of 

survival of the fittest. In GP, these programs are referred to as parse trees rather than lines of code. 

Starting with thousands of randomly created parse trees, a population of trees progressively evolves 

over many generations using principles such as the Darwinian concept of survival of the fittest.  

The programs in the population consist of elements from the function and terminal sets, which are 

predefined sets of symbols chosen to be suitable for solving problems within the specific domain of 

interest. In GP, the crossover operation involves taking randomly selected subtrees from individuals 

(chosen based on their fitness) and exchanging them. Typically, GP does not use mutation as a genetic 

operator (Asthana, 2000). 
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Fig. 6. Steps of training, testing and validation of RF model 

3.2. Modeling results 

ML model results were evaluated using mean absolute error (MAE), mean squared error (MSE), and R2 

values, which were calculated by comparing model predictions with experimental data. Data on actual 

outcomes versus model predictions were also plotted in a 'Predicted vs. Actual' graph for all models. 

All models were evaluated in Table 8, with training and test scores provided separately for the RF and 

GP models. 

Table 8. Statistical evaluation of models (R2 - coefficients of determination , MAE - mean absolute error, MSE - 

mean squared error) 

  Recovery  Grade  

  MAE MSE R2 RMSE MAE MSE R2 RMSE 

Linear Regression 7.3 76.1 0.66 8.72 3.0 13.3 0.63 3.65 

Nonlinear Regression 4.1 26.1 0.88 5.11 1.81 6.09 0.83 2.47 

 

Random Forest 

Training 1.3 3.51 0.98 1.87 0.7 1.36 0.96 1.17 

Test 4.5 61.6 0.74 7.85 2.0 9.81 0.63 3.13 

Overall 1.9 15.1 0.94 3.89 1.0 3.05 0.92 1.75 

 

Genetic 

Programing 

Training 18.8 3.2 0.92 1.79 1.38 3.63 0.90 1.91 

Test 18.1 3.0 0.92 1.73 1.37 5.73 0.82 2.39 

Overall 18.6 3.1 0.92 1.76 1.42 4.35 0.88 2.09 

3.2.1.  Linear (LR) and nonlinear (NLR) regressions 

The assessment of linear regression's suitability for analyzing a dataset on kinetic flotation processes, 

despite their inherent non-linearity (Napier-Munn, 2012), initially focused on Eq. 2 for recovery:  

𝑅𝐶𝑢,% = 47.62 + 0.31𝑅1 +  0.55𝑅2 +  0.41𝑅3 +  1.05𝑇                               (2) 

and Eq. 3 for grade: 

𝑐𝐶𝑢,% = 12.46 + 0.11𝑅1 +  0.10𝑅2 +  0.08𝑅3 −  0.44𝑇                               (3) 
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Notably, the collector R2 exhibited the most significant impact on the Cu recovery with an intercept 

value of 0.55, a finding visually supported by comparisons across Figs. 2, 3, and 4 single collector 

systems. However, the models' coefficients of determination (R2 values) were 0.66 for recovery, and 0.63 

for grade, as further detailed in Table 8, suggesting a low fit. 

 

Fig. 7. Predicted data by model versus actual data of linear regression for Cu recovery (a) and grade (b) (R2= 0.66 

for recovery, R2 = 0.63 for grade) 

The linear regression models revealed high intercepts for recovery (48%) and grade (12%). This 

configuration led to significant overestimations of recovery at low and high dosages (e.g., a predicted 

recovery of 52% versus an actual of 24% in the D30 test with 0 g/Mg R1, 0 g/Mg R2, and 10 g/Mg R3). 

Conversely, the model tended to underestimate recovery at moderate dosages, highlighting a critical 

limitation in its predictive accuracy for this dataset. 

Given these observations, it became clear that linear regression, while providing some insights, was 

ultimately not the best fit for capturing the dataset's dynamics. This realization prompted the 

exploration of nonlinear regression techniques as a more appropriate analytical method to account for 

the dataset's complex behavior and better match the actual recovery and grade outcomes.  

The nonlinear distribution observed in the predicted vs. actual data plots for linear models, as shown 

in Fig. 8, suggested that a nonlinear approach might result in better accuracy using the same dataset 

Consequently, a quadratic nonlinear regression model with four independent variables was developed, 

resulting in the following equations for recovery: 

 

Fig. 8. Predicted data by model versus actual data of nonlinear regression for Cu recovery (a) and grade (b) (R2= 

0.88 for recovery, R2 = 0.83 for grade) 
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𝑅𝐶𝑢,% = 23.79516 + 0.6737657𝑅1 + 2.4745793𝑅2 + 1.2751012𝑅3 + 3.7580174𝑇 + 0,0006715𝑅1
2 −

0.0358944𝑅2
2 − 0.0097735𝑅3

2 − 0.0051108𝑇⬚
2 −  0.0404622𝑅1𝑅2 − 0.0443650𝑅1𝑅3  − 0.0117114𝑅1𝑇 −

 0.0121262𝑅2𝑅3 − 0.0099031𝑅2𝑅4 − 0.0767678𝑅3𝑅4                   (4) 

and grade: 

𝑐𝐶𝑢,% = 11.06091346 + 0.3263932𝑅1 + 0.47578347𝑅2 + 0.35184401𝑅3 − 1.19667845𝑇

− 0.00311324𝑅1
2 − 0.00598659𝑅2

2 − 0.0018382𝑅3
2 − 0.00594995𝑇⬚

2 −  0.00710672𝑅1𝑅2 

−0.00928089𝑅1𝑅3  − 0.00518962𝑅1𝑇 − 0.00492281𝑅2𝑅3 − 0.00398046𝑅2𝑇 + 0.03015359𝑅3𝑇    (5) 

The intercept values for the nonlinear model were approximately 24% for the recovery, and 11% for 

the grade. According to the statistical analysis detailed in Table 8, the nonlinear regression 

demonstrated a more satisfactory fit compared to the linear regression, with R2 values of 0.88 for the 

recovery model, and 0.83 for the grade model. Despite this improvement, the analysis indicated a need 

for more advanced models, particularly to enhance accuracy at both low and high dosages for recovery 

and grade. 

3.2.2. Random Forest (RF) 

Reflecting on the limitations identified in both linear and nonlinear regression models, as discussed in 

the previous chapter, the exploration of more sophisticated techniques became imperative. This led to 

the testing of advanced modeling approaches, among which the RF model emerged as significantly 

more accurate in correlating actual with predicted data than both the linear and nonlinear models. The 

RF model demonstrated a marked reduction in both overestimation and underestimation errors for 

recovery predictions, as visually represented in Fig. 9. 

  
 

Fig 7. Predicted data by model versus actual data of RF model for Cu recovery (a) and grade (b) (R2= 0.94 for 

recovery, R2 = 0.92 for grade) 

Notably, the RF model achieved the highest R2 scores among all models evaluated, with an R2 of 0.94 

for recovery and 0.92 for the grade (Table 8). These results highlighted the RF model's robustness and 

its capability to offer a more precise prediction of outcomes, thereby addressing some of the critical 

limitations faced by the earlier linear and nonlinear regression models. 

3.2.3. Genetic Programming (GP) 

The GP model exhibited a commendable performance in predicting both recovery and grade, as 

evidenced by its consistent and high R2 values across both training and testing phases, with values of 

0.92 for the recovery and 0.90 for grade in training, maintaining at 0.92 for recovery and slightly dipping 

to 0.82 for grade in testing. The overall performance metrics further solidify its predictive capability, 

with R2 values of 0.92 for recovery and 0.88 for grade, showcasing the model's robustness and reliability. 

The GP was more successful than linear and nonlinear regression, but its fitness between actual and 
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predicted values was lower than RF. Although the overall scores of the GP were lower than those of the 

RF, there was a higher consistency between the models on the test and training. 

 

Fig. 8. Predicted data by model versus actual data of GP for Cu recovery (a) and grade (b) (R2= 0.92 for recovery, 

R2 = 0.88 for grade) 

3.3. Model justification and selection  

In this section, new data (which were not used for model development) were utilized for the model 

performance evaluation. Two additional experiments at different dosages were conducted for this 

validation. The selection of collector dosages was based on the data ranges used to train the model. 

Initially, an experiment was conducted using 10 g/Mg from each of the three collectors, followed by a 

second experiment with 20 g/Mg for each collector. Recovery and grade were then calculated as 

functions of time. 

Table 9. Prediction of models using unseen data and scores of the models (LR: Linear Regression, NLR: 

Nonlinear Regression, RF: Random Forest and GP: Genetic Programing) 

Condition Time Actual  

recovery 

LR 

recovery 

NLR 

recovery 

RF 

recovery 

GP 

recovery 

Actual 

grade 

NR 

grade  

NLR 

grade 

RF 

grade 

GP 

grade 

Mixture 1 

10g/Mg R1, 

10g/Mg R2, 

10g/Mg R3 

 

1 53.3 61.3 57.2 53.2 52.6 21.9 14.8 18.1 20.1 20.5 

3 70.3 63.4 63.6 69.0 68.1 14.6 13.9 15.6 13.9 14.9 

7 79.1 67.6 74.5 79.4 77.3 9.8 13.9 11.4 9.3 10.9 

15 87.3 75.9 88.9 85.0 84.3 6.3 8.7 5.9 6.3 7.4 

30 91.1 91.6 89.5 89.2 89.8 5.0 2.2 6.1 4.8 4.2 

Mixture 2 

20g/Mg R1, 

20g/Mg R2, 

20g/Mg R3 

 

1 57.1 73.9 58.6 57.6 62.5 19.1 17.6 19.8 23.2 21.1 

3 71.6 76.0 64.5 72.2 74.6 14.5 16.8 17.0 15.5 14.9 

7 80.1 80.2 74.3 81.2 82.6 10.3 15.0 12.2 13.2 10.9 

15 87.4 88.6 86.6 87.2 88.9 6.5 11.5 5.5 7.1 7.4 

30 91.0 104.3 83.1 90.1 93.9 5.2 5.0 3.4 5.5 4.3 

Model’s score  0.56 0.90 0.99 0.96  0.59 0.90 0.92 0.97 

According to the predictions made by the models using new data (Table 9), there was a noticeable shift 

in performance metrics. The accuracy of linear regression (LR) decreased for both recovery and grade. 

Conversely, in the case of nonlinear regression (NLR), the model's score for recovery improved from 

0.88 to 0.90, and for grade, it increased from 0.83 to 0.90. The GP algorithm stood out with a prediction 

accuracy of 0.97 for grade, outperforming all other models in this aspect. Given the GP's training and 

test scores of 0.92 and 0.90, respectively, its predictions for grade with the new unseen data 

demonstrated remarkable success. The RF model exhibited exceptional prediction accuracy, achieving 
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a score of 0.99 for recovery. Its score for grade reached 0.92. The overall performance of both RF and GP 

with validation data was quite satisfactory. However, the sensitivity analysis was conducted using RF 

due to its superior performance in recovery estimation. 

4. Discussion 

4.1. Contribution of collectors (sensitivity analysis) 

Since time (T) was identified as the most influential factor affecting recovery and grade across all 

models, as expected, and given the primary focus on collectors in this study, it was used as a controlled 

input variable. The sensitivity analysis was then applied based on the type of collector. It was possible 

to determine the most significant contributor from the model equations provided by linear and 

nonlinear regressions. Linear regression, which had the lowest performance, indicated that the most 

effective collector for recovery was R2 (AEROPHINE® 3422), and for grade R1 (NAX), based on the 

coefficient values in the objective function. Similarly, nonlinear regression also identified R2 as the most 

dominant collector for both recovery and grade. 

Since RF demonstrated higher accuracy on Cu-recovery than other tested models (Table 9), the 

sensitivity analysis was performed only on the RF model. Considering that RF is part of a black-box 

model family, interpreting its behavior through coefficient values is not feasible. Although it is possible 

to assess the impact of factors on outputs, with some stock commands depending on the software used, 

this study followed a basic approach to conduct the sensitivity analysis by physically observed changes 

in results based on variable levels. Table 6 outlines the average value and standard deviation of the 

dosages, and a new dataset was generated by adjusting one input variable to its average value and ± 

one standard deviation from it, while keeping the other two input variables' mean values constant. 

Running the final RF models with this new dataset allowed for a comparison of the variable effects 

based on changes in the results. In summary, the difference between one standard deviation above and 

below the mean value of the reagent's dosage, while keeping the other parameters at their mean values, 

was considered an indicator of the collector's contribution to grade and recovery. 

Fig. 11 demonstrates the effect on recovery and grade of modifying the dosage of each collector by 

plus or minus one standard deviation within the RF. The variations in recovery ranged from an increase 

of 4.1% to 2.0% for R1, a substantial increase of 10.4% to 4.4% for R2, and a modest increase of 5.1% to 

0.5% for R3 (Fig. 11b). It was noted that the impact of these changes diminished as the flotation time 

extended. However, as shown in Fig. 11, R2 consistently produced the largest change in recovery, 

underscoring its significant influence on flotation recovery. The sensitivity analysis conducted for grade 

revealed distinct patterns for variables: RF identified R2 as the least effective collector, and R1 as the 

most effective one (Fig. 11a). 

 

Fig. 11. Sensitivity analysis of the dosages of collectors on recovery (a) and grade (b) based on RF: Changes in 

recovery and grade at differences of ± standard deviations 

4.2. Correlation between reagent chemistry and model’s outputs 

The components of the reagents used in this study are as follows; -R1- a mixture of sodium isobutyl 

xanthate and sodium ethyl xanthate, -R2- a mixture based on isopropyl ethyl thionocarbamate and 

(a) (b) 
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dithiophosphinate and -R3- a mixture based on reaction mass of S-allyl O-(2-methyl butyl) 

dithiocarbonate and S-allyl O-pentyl dithiocarbonate, and n-butoxycarbonyl-O-n-butyl 

thionocarbamate. Each listed components have different adsorption properties on different minerals. It 

was proven that it is not possible to apply a uniform single adsorption theory on specific minerals 

extracted from various ores (Fuerstenau, 1979). For instance, either the absence or the presence of 

oxygen and also pH can switch the adsorption mechanism as chemisorption or physisorption for the 

same mineral with xanthate (Bulatovic, 2006). Moreover, the observations on adsorption properties of 

specific components on a single mineral don’t really work as it is in real ore systems, i.e. galvanic 

reaction of sulfide minerals (Rao and Finch, 1988). Even though synergism between thiol collector leads 

to increased grade and recovery, the background mechanism in this synergistic effect is still unclear in 

real ore flotation due to variability and uncertainty of the nature of the flotation itself. This study has 

similar drawback. Both experimental results and modeled output showed that synergism between 

different substances led to enhanced flotation, but it was impossible to determine the mechanism 

behind. The potential reason for this improvement can be caused by larger surface coverage of 

weak/strong site by strong/selective collectors as explained elsewhere (Bradshaw et al., 1998; Lotter 

and Bradshaw, 2010; McFadzean et al., 2013) or the multilayer formation between metal thiolate 

(chemisorption between mineral surface and dithiocarbamate) and dixanthogen (physisorption 

between metal-thiolate and xanthate) (Bagci et al., 2007; McFadzean et al, 2012; Taguta et al., 2018). 

Using mixtures in the flotation system introduces variability in functional groups and hydrocarbon 

chain lengths. For example, when R1 and R2 are used together, the different functional groups (-OCS2 

for R1 and -NCS2, -PS2 for R2) are expected to provide a higher adsorption rate due to varied collector 

strengths and different surface adsorption tendencies. This assumption is supported by experimental 

findings. Additionally, the RF method was used to generate data for creating ternary plots with the 

three reagents in different combinations (with a total dosage of 60 g/Mg). Long flotation time made it 

difficult to observe the collector’s effect, as grade and recovery accumulated within a narrow range. For 

copper, it was recommended to conduct flotation tests at a bench scale for 6-8 minutes (Kawatra, 2011); 

consequently, 7 minutes of flotation was chosen for creating ternary plots graphs for grade and recovery 

(Fig. 12). 

Dithiocarbamates are known to have higher collector strength than xanthates due to nitrogen being 

less electronegative than oxygen, which makes it more inclined to donate electrons. This results in a 

collector that is less selective (Lotter and Bradshaw, 2010; Bagci et al., 2007). Since R2 and R3 contained 

types of dithiocarbamates, the xanthate mixture in R1 became more selective within the ternary mixture 

system. As shown in Fig. 12, as the dosage of R2 and R3 increased in the mixture, the flotation recovery 

was higher, while the grade was a function of the dosage of R1 in the mixture. An antagonistic behavior 

regarding the grade was observed when R2 and R3 were used together at high dosages.  

The ternary graphs created by RF (Fig. 12), enabled the identification of optimum levels of reagents 

for achieving targeted grades and recovery. For a higher grade, the optimum dosage should be between 

 

Fig. 12. Predicted grade (a) and recovery (b) at 7-minute flotation of the ternary collector mixtures 

(a) (b) 



17 Physicochem. Probl. Miner. Process., 60(4), 2024, 191709 

 

30-40 g/Mg for R1, 5-10 g/Mg for R2, and 10-20 g/Mg for R3. For higher recovery, the recommended 

dosages are 0-15 g/Mg for R1, 35-50 g/Mg for R2, and 10-20 g/Mg for R3. While it is not possible to 

maximize both grade and recovery simultaneously, it is feasible to determine an optimum range based 

on the process's priority. For achieving the Cu grade greater than 13% and the Cu recovery exceeding 

80%, recommended recipes are as follows: recipe 1: 10 g/Mg R1, 30 g/Mg R2, and 20 g/Mg R3; or recipe 

2: 40 g/Mg R1, 10 g/Mg R2, and 10 g/Mg R3. It should be noted that these recipes prepared based on 

the mixture at total of 60 g/Mg, but RF can be easily utilized to make ternary graphs for different total 

dosages for different flotation time using the same method and optimum recipes can be determined in 

different conditions.  

5. Conclusions 

This research aimed not only at predicting the copper grade and recovery using machine learning (ML) 

models but also at interpreting the impact of reagents on grade and recovery as well as at assessing the 

improvement achieved when using collectors alone or in combinations (i.e., binary and ternary 

mixtures). Rather than using variables as inputs such as pH, gas flowrate, and particle size distribution 

from different components that constitute the flotation system, it focused on three collectors that directly 

interact with each other. The conclusions of the study are summarized as follows: 

• Machine learning tools can be used to model the results of batch-scale flotation tests, just like simple 

statistical methods. However, these tools do better than linear and multilinear regressions in being 

accurate and efficient. The Genetic Programming (GP) model had more consistent model accuracy 

between training and testing stages, but the overall score of the Random Forest (RF) model was 

slightly higher. Importantly, GP was more accurate with new data when predicting grade, whereas 

RF was better at predicting recovery. 

• Considering the complexity of the flotation process, it is important to thoroughly review the model 

outcomes, instead of relying solely on statistical assessment, to prevent any discrepancies between 

model results and experiential understanding. 

• Experimental findings revealed that using AEROPHINE® 3422 led to higher copper recovery and 

grade in a single collector system, particularly at low doses. However, a combination of three 

collectors, i.e., NAX, AEROPHINE® 3422, and AERO® MX-5149, generally resulted in better flotation 

performance than using one collector. 

• According to the sensitivity analysis, which is one of the most critical stages of this study, 

AEROPHINE® 3422 was the most dominant collector in terms of recovery, but its effect on grade 

was relatively lesser compared to AERO® MX-5149 and NAX. This supports the existing literature 

discussed in this study: dithiocarbamates have higher collector strength than xanthates, 

dithiophosphates, and dithiophosphinates. 

• The RF model can be successfully used to prepare mixtures in different dosages by creating a ternary 

graph for desired recovery and grade values. This application is recommended as a useful tool to 

examine interactions in all flotation applications using a ternary system, not just for collectors. 

For future studies, it is essential to conduct an optimization study including the financial and 

environmental indexes of these three reagents. The optimization process will help to identify the most 

cost-effective and environmentally friendly combination of reagents while maximizing the desired 

outcomes. By taking into account the cost and environmental factors, the study can lead to improved 

efficiency and sustainability in the flotation process. 
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