PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Nano Powders (SiO2 – Graphite) Dielectric Mixture on Surface Integrity in Machining of Stainless Steel 304L

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
One of the applications of electrical discharge machining nowadays, mainly nano powder mix electrical discharge machining, is to produce high-quality surface integrity materials. To achieve good results, change the input process settings as needed. The current study investigates the effect of discharge current, pulse on time (Pon), pulse off time (Poff), powder concentration, and mixing ratio of SiO2 – graphite nano powder on SR – surface roughness, EWR – electrode wear rate, and MRR – material removal rate during electrical discharge machining (EDM) of 304L stainless steel. A cylindrical copper electrode with a diameter of 16 mm and a length of 40 mm was used as a tool electrode in this novel machining method. The experiment used a MINITAB 18 half-factorial design with five components and five levels. A total of 24 tests (12 for conventional EDM and 12 for NPMEDM) were performed using various combinations of input elements. The findings revealed that adding silicon dioxide-graphite nanoparticles to an EDM kerosene dielectric significantly boosted the MRR while decreasing the EWR and SR. This study looks into modifying dielectrics with SiO2 – graphite nano powder to improve machining performance. The performance of this newly invented nano powder-mixed electrical discharge machining (NPMEDM) technology is compared to traditional EDM. The average MRR increases from 0.1263 to 0.1324 g/min, EWR decreases from 0.0066 to 0.0052 g/min, and SR climbs from 5.381 to 5.063 µm.
Wydawca
Rocznik
Tom
Strony
251--257
Opis fizyczny
Bibliogr. 43 poz., rys., tab.
Twórcy
  • Production Engineering and Metallurgy Department University of Technology, Iraq Baghdad, Iraq
  • Production Engineering and Metallurgy Department University of Technology, Iraq Baghdad, Iraq
Bibliografia
  • [1] S. Diyaley, S. Chakraborthy, “An Analysis on the Parametric Optimization of Electrochemical Honing Process.” Journal of Advanced Manufacturing Systems, vol. 19, no. 2, pp. 249-276, 2020.
  • [2] P. Jain, D. Dwivedi, H. Singh, “Performance of different abrasive tools in electrochemical honing of coated surfaces.” International Journal of Mechatronics and Manufacturing Systems, vol. 12, no. 1, pp. 38-48, 2019.
  • [3] M. Yunus Khan, P. Sudhakar Rao, B. Pabla, “Investigations on the feasibility of Jatropha curcas oil-based biodiesel for sustainable dielectric fluid in EDM process.” Materials Today: Proceedings, vol. 26, pp. 335-340, 2020.
  • [4] M.Y. Khan, P.S. Rao, “Electrical Discharge Machining: Vital to Manufacturing Industries.” International Journal of Innovative Technology and Exploring Engineering, vol. 8, no. 11, pp. 1696-1701, 2019.
  • [5] M. Rizwee, P. Sudhakar Rao, M.Y. Khan, “Recent advancement in electric discharge machining of metal matrix composite materials.” Materials Today: Proceedings, vol. 37, pp. 2829-2836, 2021.
  • [6] B.K. Baroi, T. Debnath, Jagadish, P.K. Patowari, “A State-ofthe-Art Review on Surface Modification Techniques in Electric Discharge Machining.” Low Cost Manufacturing Technologies, pp. 165-179, 2023.
  • [7] M.Y. Khan, P.S. Rao, “Hybridization of Electrical Discharge Machining Process.” International Journal of Engineering and Advanced Technology, vol. 9, no. 1, pp. 1059-1065, 2019.
  • [8] M.Y. Khan, P.S. Rao, “Optimization of Process Parameters of Electrical Discharge Machining Process for Performance Improvement.” International Journal of Innovative Technology and Exploring Engineering, vol. 8, no. 11, pp. 3830-3836, 2019.
  • [9] S.K. Singh, S.C. Jayswal, “Modelling and optimization of EDM Process Parameters on Machining of Inconel 686 using RSM.” International Journal of Applied Engineering Research, vol. 13, no. 11, pp. 9935-9344, 2018.
  • [10] A. Banu, M.Y. Ali, “Electrical Discharge Machining (EDM): A Review.” International Journal of Engineering Materials and Manufacture, vol. 1, no. 1, pp. 3-10, 2016.
  • [11] T.Y. Saindane, H.G. Patil, “Electrical Discharge Machining – A State of Art.” International Journal of Innovative Science, Engineering & Technology, vol. 3, no. 4, pp. 262-266, 2016.
  • [12] S.D. Gattu, J. Yan, “Micro Electrical Discharge Machining of Ultrafine Particle Type Tungsten Carbide Using Dielectrics Mixed with Various Powders.” Micromachines, vol. 13, no. 7, p. 998, 2022.
  • [13] S. Assarzadeh, M. Ghoreishi, “A dual response surface-desirability approach to process modeling and optimization of Al2O3 powder-mixed electrical discharge machining (PMEDM) parameters.” The International Journal of Advanced Manufacturing Technology, vol. 64, no. 9, pp. 1459-1477, 2012.
  • [14] D. Kumar, V. Kumar Pathak, R. Singh, “Effect of powder mixed dielectric medium in electrical discharge machining – A review.” Materials Today: Proceedings, vol. 62, pp. 1596-1600, 2022.
  • [15] A. Batish, A. Bhattacharya, V.K. Singla, G. Singh, “Study of Material Transfer Mechanism in Die Steels Using Powder Mixed Electric Discharge Machining.” Materials and Manufacturing Processes, vol. 27, no. 4, pp. 449-456, 2012.
  • [16] M.U. Farooq, H.A. Bhatti, M. Asad, M.S. Kumar, S. Zahoor, A.M. Khan, “Surface generation on titanium alloy through powder-mixed electric discharge machining with the focus on bioimplant applications.” The International Journal of Advanced Manufacturing Technology, vol. 122, no. 3, pp. 1395-1411, 2022.
  • [17] A. Kumar, S. Maheshwari, C. Sharma, N. Beri, “A Study of Multiobjective Parametric Optimization of Silicon Abrasive Mixed Electrical Discharge Machining of Tool Steel.” Materials and Manufacturing Processes, vol. 25, no. 10, pp. 1041-1047, 2010.
  • [18] A.Y. Joshi, A.Y. Joshi, “A systematic review on powder mixed electrical discharge machining.” Heliyon, vol. 5, no. 12, 2019.
  • [19] Y.A. Mohammad, N.A.B.A. Rahman, E.B.M. Aris, “Powder Mixed Micro Electro Discharge Milling of Titanium Alloy: Investigation of Material Removal Rate.” Advanced Materials Research, vol. 383, pp. 1759-1763, 2011.
  • [20] N.K. Khedkar, T.P. Singh, V.S. Jatti, “Material migration and surface improvement of OHNS die steel material by EDM method using tungsten powder-mixed dielectric.” WSEAS Transactions on Applied and Theoretical Mechanics, vol. 9, no. 1, pp. 161-166, 2014.
  • [21] B. Singh, J. Kumar, S. Kumar, “Influences of Process Parameters on MRR Improvement in Simple and Powder- Mixed EDM of AA6061/10%SiC Composite.” Materials and Manufacturing Processes, vol. 30, no. 3, pp. 303-312, 2014.
  • [22] K. Ojha, R.K. Garg, K.K. Singh, “Experimental investigation and modelling of PMEDM process with chromium powder suspended dielectric.” International Journal of Applied Science and Engineering, vol. 9, no. 2, pp. 65-81, 2011.
  • [23] P.R. Dewan, P.K. Kundu, R. Phipon, “Powder mixed electric discharge machining – A review.” Proceedings of Advanced Material, Engineering & Technology, vol. 2237, no. 1, 2020.
  • [24] B.T. Long, N. Cuong, N.H. Phan, P. Janmanee, “Machining properties evaluation of copper and graphite electrodes in PMEDM of SKD61 steel in rough machining.” International Journal of Engineering and Advanced Technology (IJEAT), vol. 4, no. 3, pp. 193-202, 2015.
  • [25] N. Mookam, P. Sunasuan, T. Madsa, P. Muangnoy, S. Chuvaree, “Effects of Graphite and Boron Carbide Powders Mixed into Dielectric Fluid on Electrical Discharge Machining of SKD 11 Tool Steel.” Arabian Journal for Science and Engineering, vol. 46, no. 3, pp. 2553-2563, 2021.
  • [26] R.K. Patel, M.K. Pradhan, “Machining of nickel-based super alloy Inconel 718 using alumina nanofluid in powder mixed electric discharge machining.” Materials Research Express, vol. 10, no. 3, pp. 036501, 2023.
  • [27] P.C. Tan, S.H. Yeo, Y.V. Tan, “Effects of nano powder additives in micro-electrical discharge machining.” International Journal of Precision Engineering and Manufacturing, vol. 9, no. 3, pp. 22-26, 2008.
  • [28] S. Prabhu, B. Vinayagam, “Analysis of surface characteristics of AISI D2 tool steel material using electric discharge machining process with single-wall carbon nanotubes.” International Journal of Machining and Machinability of Materials, vol. 10, no. 1-2, pp. 99-119, 2011.
  • [29] M.P. Jahan, M. Rahman, Y.S. Wong, “Study on the nano-powder-mixed sinking and milling micro-EDM of WC-Co.” The International Journal of Advanced Manufacturing Technology, vol. 53, no. 1, pp. 167-180, 2010.
  • [30] P. Sivaprakasam, P. Hariharan, S. Gowri, “Experimental investigations on nano powder mixed Micro-Wire EDM process of inconel-718 alloy.” Measurement, vol. 147, p. 106844, 2019.
  • [31] T. Suzuki, M. Kato, H. Saito, and H. Iizuka, “Effect of Carbon Nanotube (CNT) Size on Wear Properties of Cu-Based CNT Composite Electrodes in Electrical Discharge Machining.” Journal of Solid Mechanics and Materials Engineering, vol. 5, no. 7, pp. 348-359, 2011.
  • [32] C. Mai, H. Hocheng, S. Huang, “Advantages of carbon nanotubes in electrical discharge machining.” The International Journal of Advanced Manufacturing Technology, vol. 59, no. 1, pp. 111-117, 2011.
  • [33] S. Izman, D. Ghodsiyeh, T. Hamed, R. Rosliza, M. Rezazadeh, “Effects of Adding Multiwalled Carbon Nanotube into Dielectric when EDMing Titanium Alloy.” Advanced Materials Research, vol. 463, pp. 1445-1449, 2012.
  • [34] M. Mohammadzadeh Sari, M.Y. Noordin, E. Brusa, “Role of multi-wall carbon nanotubes on the main parameters of the electrical discharge machining (EDM) process.” The International Journal of Advanced Manufacturing Technology, vol. 68, no. 5, pp. 1095-1102, 2013.
  • [35] S. Patil, R. Kulkarni, M. Patil, V.R. Malik, “Investigations on material removal and tool wear rate of silver nanoparticles coated copper electrodes for electric discharge machining.” Advances in Materials and Processing Technologies, pp. 1-29, 2023.
  • [36] S. Mohal, H. Kumar, “Parametric optimization of multiwalled carbon nanotube-assisted electric discharge machining of Al-10%SiCp metal matrix composite by response surface methodology.” Materials and Manufacturing Processes, vol. 32, no. 3, pp. 263-273, 2016.
  • [37] M. Shabgard, B. Khosrozadeh, “Investigation of carbon nanotube added dielectric on the surface characteristics and machining performance of Ti-6Al-4V alloy in EDM process.” Journal of Manufacturing Processes, vol. 25, pp. 212-219, 2017.
  • [38] A. Kumar, A. Mandal, A.R. Dixit, A.K. Das, “Performance evaluation of Al2O3 nano powder mixed dielectric for electric discharge machining of Inconel 825.” Materials and Manufacturing Processes, vol. 33, no. 9, pp. 986-995, 2017.
  • [39] P. Sivaprakasam, P. Hariharan, S. Gowri, “Experimental investigations on nano powder mixed Micro-Wire EDM process of inconel-718 alloy.” Measurement, vol. 147, p. 106844, 2019.
  • [40] Y. Tijjani, “High temperature applications of carbon nanotubes (CNTs) [v]: thermal conductivity of CNTs reinforced silica nanocomposite.” Bayero Journal of Pure and Applied Sciences, vol. 15, no. 1, pp. 136-140, 2022.
  • [41] Y. Wu, “Synergistic Effects of Boron Nitride (BN) Nanosheets and Silver (Ag) Nanoparticles on Thermal Conductivity and Electrical Properties of Epoxy Nanocomposites.” Polymers, vol. 12, no. 2, p. 426, 2020.
  • [42] V. Lalwani, P. Sharma, C.I. Pruncu, D.R. Unune, “Response Surface Methodology and Artificial Neural Network-Based Models for Predicting Performance of Wire Electrical Discharge Machining of Inconel 718 Alloy.” Journal of Manufacturing and Materials Processing, vol. 4, no. 2, p. 44, 2020.
  • [43] M.P. Jahan, M.M. Anwar, Y.S. Wong, M. Rahman, “Nanofinishing of hard materials using micro-electrodischarge machining.” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 223, no. 9, pp. 1127-1142, 2009.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e3016db8-fa7a-48eb-b93c-052fbf998137
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.