Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The determination of the dynamic properties of materials is a complicated process. Ordinary static tension or compression tests often reveal a dependence between the elastic properties and the deformation velocity (which in such tests has an initially fixed constant value). This means that the rheological model of materials may be complicated, often going beyond the generally used linear viscoelastic model. The identification method presented in this paper can be helpful in determining the form of the rheological model of a material. The method consists in an appropriate analysis of the load-deformation dependences determined for a wide range of velocities of the motion of a concentrated mass attached to a flexible element made of the tested material. The method is based on the rheological Zener model appropriately extended to enable the evaluation of mechanical material properties also at high strain rates. Therefore a solid fraction, a nonlinear spring function and a nonlinear damping function are additionally included in the model. The forms of the functions are not fixed a priori, but are developed by the presented method. The method was verified on a numerical example as well as on a real material object.
Czasopismo
Rocznik
Tom
Strony
380--386
Opis fizyczny
Bibliogr. 17 poz., rys., tab., wykr.
Twórcy
autor
- Faculty of Mechanical Engineering, Department of Mechanics, Materials Science & Engineering, Wroclaw University of Technology, Smoluchowskiego 25, 50-372 Wroclaw, Poland
Bibliografia
- [1] R. Skalak, S. Chien, Handbook of Bioengineering, Mc Graw- Hill Book Company, New York, 1979.
- [2] J.H. McElhaney, Dynamic response of bone and muscle tissue, Journal of Applied Physiology 21 (1966) 1231–1236.
- [3] A.D. Drozdov, J. deC. Christiansen, Cyclic viscoplasticity of solid polymers: the effects of strain rate and amplitude of deformation, Polymer 48 (2007) 3003–3012.
- [4] S.F. Masri, T.K. Caughey, A nonparametric identification technique for nonlinear dynamic problems, Journal of Applied Mechanics 46 (1979) 433–445.
- [5] S.F. Masri, H. Sassi, Identification and modeling of nonlinear systems, Nuclear Engineering and Design 72 (1982) 235–270.
- [6] P. Ibanez, Identification of dynamic parameters of linear and nonlinear structural models from experimental data, Journal of Nuclear Engineering and Design 25 (1975) 30–41.
- [7] H.J. Rice, J.A. Fitzpartick, The measurement of nonlinear damping in single-degree-of-freedom systems, Journal of Vibration and Acoustic 113 (1991) 132–140.
- [8] J. Warminsky, S. Lenci, M.P. Cartmell, G. Rega, M. Wiercigroch, Nonlinear Dynamics Phenomena in Mechanics, Springer- Verlag, Berlin, Heidelberg, 2012.
- [9] T.S. Jang, H.S. Choi, S.L. Han, A new method for detecting non-linear damping and restoring forces in non-linear oscillation systems from transient data, International Journal of Non-Linear Mechanics 44 (7) (2009) 801–808.
- [10] J.B. Roberts, J.F. Dunne, A. Debonos, A spectral method for estimation of non-linear system parameters from measured response, Probabilistic Engineering Mechanics 10 (1995) 199–207.
- [11] M. Kulisiewicz, Identification method for the dynamic properties of the mechanical structures on basis of the Duffing non-symetrical model, Nonlinear Vibration Problems (Polish Academy of Science) 20 (1981) 203–245.
- [12] M. Kulisiewicz, A nonparametric method of identification of vibration damping in non-linear dynamic systems, International Journal of Solids Structures 19 (7) (1983) 601–609.
- [13] M. Kulisiewicz, R. Iwankiewicz, S. Piesiak, An identification technique for non-linear dynamical systems under stochastic excitations, Journal of Sound and Vibration 200 (1) (1997) 31–40.
- [14] M. Kulisiewicz, S. Piesiak, M. Bocian, Identification of nonlinear damping using energy balance method with random pulse excitation, Journal of Vibration and Control 7 (2001) 699–710.
- [15] K.A. Jarczewska, P. Koszela, P. Śniady, A. Korzec, Identification of structure parameters using short-time non-stationary stochastic excitation, Journal of Sound and Vibration 330 (14) (2011) 3352–3367.
- [16] P. Śniady, R. Sieniawska, S. Żukowski, Identification of the structure parameters applying moving load, Journal of Sound and Vibration 319 (1/2) (2009) 355–365.
- [17] S.S. Sarva, S. Deschanel, Mary C. Boyce, Weinong Chen, Stress–strain behavior of polyurea and polyurethane from low to high strain rates, Polymer 48 (2007) 2208–2213.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e2fd6d0c-7213-40ef-aaa0-a196d5ab8bfe