PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Detection of sudden cardiac death by a comparative study of heart rate variability in normal and abnormal heart conditions

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Background and objective: Sudden cardiac death (SCD) is an unexpected loss in functioning of the heart. It generally occurs within 1 h of onset of symptoms. No reliable method for early detection of SCD is available. Therefore, the development of a non-invasive method for risk identification remains a topic of utmost interest. This paper presents a novel approach for detection of the risk of SCD by performing a comparative analysis of heart rate variability (HRV) in normal subjects as well as patients with coronary artery disease and heart failure. Methods: HRV of four subject groups, normal sinus rhythm, coronary artery disease, congestive heart failure, and SCD, has been analyzed. The analysis was performed by using nonlinear techniques and time-frequency representation obtained by generalized S-transform. The extracted features were examined for their clinical significance by using the Kruskal–Wallis one-way analysis of variance and multiple comparisons. Eventually, classification was performed using support vector machines and decision tree classifiers to separate the individuals at risk of SCD. Results: The performance of the proposed methodology has been evaluated using PhysioNet open-access databases. Statistical analysis shows that HRV in SCD group differs significantly from other groups. For classification, an accuracy of 91.67% was achieved with 83.33% sensitivity, 94.64% specificity, and 84.75% precision. Conclusion: The experimental results obtained by analyzing retrospective data seem promising. However, the methodology needs to be tested on larger databases to generalize the findings. Prospective studies on its clinical usefulness may help in developing a concrete diagnostic technique.
Twórcy
  • Department of Electrical Engineering, Indian Institute of Technology Roorkee, Roorkee 247 667, India
  • Department of Electrical Engineering, Indian Institute of Technology Roorkee, Roorkee, India
Bibliografia
  • [1] Wong CX, Brown A, Lau DH, Chugh SS, Albert CM, Kalman JM, et al. Epidemiology of sudden cardiac death: global and regional perspectives. Heart Lung Circ 2019;28(1):6–14. http://dx.doi.org/10.1016/j.hlc.2018.08.026.
  • [2] Haqqani HM, Chan KH, Kumar S, Denniss AR, Gregory AT. The contemporary era of sudden cardiac death and ventricular arrhythmias: basic concepts, recent developments and future directions. Heart Lung Circ 2019;28(1):1–5. http://dx.doi.org/10.1016/S1443-9506(18)31972-3.
  • [3] Van Zaen J, Chételat O, Lemay M, Calvo EM, Delgado- Gonzalo R. Classification of cardiac arrhythmias from single lead ECG with a convolutional recurrent neural network. arXiv e-prints. arXiv:1907.01513; 2019.
  • [4] Moore B, Semsarian C, Chan KH, Sy RW. Sudden cardiac death and ventricular arrhythmias in hypertrophic cardiomyopathy. Heart Lung Circ 2019;28(1):146–54. http://dx.doi.org/10.1016/j.hlc.2018.07.019.
  • [5] de Luna AB, Coumel P, Leclercq JF. Ambulatory sudden cardiac death: mechanisms of production of fatal arrhythmia on the basis of data from 157 cases. Am Heart J 1989;117(1):151–9. http://dx.doi.org/10.1016/0002-8703(89)90670-4.
  • [6] Wellens HJ, Schwartz PJ, Lindemans FW, Buxton AE, Goldberger JJ, Hohnloser SH, et al. Risk stratification for sudden cardiac death: current status and challenges for the future. Eur Heart J 2014;35(25):1642–51. http://dx.doi.org/10.1093/eurheartj/ehu176.
  • [7] Lee H, Shin S-Y, Seo M, Nam G-B, Joo S. Prediction of ventricular tachycardia one hour before occurrence using artificial neural networks. Sci Rep 2016;6:32390. http://dx.doi.org/10.1038/srep32390.
  • [8] Srinivasan NT, Schilling RJ. Sudden cardiac death and arrhythmias. Arrhythm Electrophysiol Rev 2018;7(2):111. http://dx.doi.org/10.15420/aer.2018:15:2.
  • [9] Hasselqvist-Ax I, Riva G, Herlitz J, Rosenqvist M, Hollenberg J, Nordberg P, et al. Early cardiopulmonary resuscitation in out-of-hospital cardiac arrest. N Engl J Med 2015;372 (24):2307–15. http://dx.doi.org/10.1056/NEJMoa1405796.
  • [10] Parsi A, O'Loughlin D, Glavin M, Jones E. Prediction of sudden cardiac death in implantable cardioverter defibrillators: a review and comparative study of heart rate variability features. IEEE Rev Biomed Eng 2020;13:5–16. http://dx.doi.org/10.1109/RBME.2019.2912313.
  • [11] Fishman GI, Chugh SS, DiMarco JP, Albert CM, Anderson ME, Bonow RO, et al. Sudden cardiac death prediction and prevention: report from a national heart, lung, and blood institute and heart rhythm society workshop. Circulation 2010;122(22):2335–48. http://dx.doi.org/10.1161/CIRCULATIONAHA.110.976092.
  • [12] Narayan SM, Wang PJ, Daubert JP. New concepts in sudden cardiac arrest to address an intractable epidemic: JACC state-of-the-art review. J Am Coll Cardiol 2019;73(1):70–88. http://dx.doi.org/10.1016/j.jacc.2018.09.083.
  • [13] Yousuf O, Chrispin J, Tomaselli GF, Berger RD. Clinical management and prevention of sudden cardiac death. Circ Res 2015;116(12):2020–40. http://dx.doi.org/10.1161/CIRCRESAHA.116.304555.
  • [14] Zipes DP, Wellens HJ. Sudden cardiac death. Circulation 1998;98(21):2334–51. http://dx.doi.org/10.1161/01.CIR.98.21.2334.
  • [15] Acharya UR, Faust O, Sree V, Swapna G, Martis RJ, Kadri NA, et al. Linear and nonlinear analysis of normal and CAD-affected heart rate signals. Comput Methods Progr Biomed 2014;113(1):55–68. http://dx.doi.org/10.1016/j.cmpb.2013.08.017.
  • [16] Koshy SK, George EK, George LK. Value of echocardiogram in predicting sudden cardiac death: a look beyond ejection fraction. Echocardiography 2019;36(3):431–2. http://dx.doi.org/10.1111/echo.14298.
  • [17] Buxton AE, Lee KL, Hafley GE, Pires LA, Fisher JD, Gold MR, et al. Limitations of ejection fraction for prediction of sudden death risk in patients with coronary artery disease: lessons from the MUSTT study. J Am Coll Cardiol 2007;50 (12):1150–7. http://dx.doi.org/10.1016/j.jacc.2007.04.095.
  • [18] Zaman S, Goldberger JJ, Kovoor P. Sudden death risk- stratification in 2018–2019: the old and the new. Heart Lung Circ 2019;28(1):57–64. http://dx.doi.org/10.1016/j.hlc.2018.08.027.
  • [19] Rodrigues P, Joshi A, Williams H, Westwood M, Petersen SE, Zemrak F, et al. Diagnosis and prognosis in sudden cardiac arrest survivors without coronary artery disease: utility of a clinical approach using cardiac magnetic resonance imaging. Circulation: Cardiovasc Imaging 2017;10(12): e006709. http://dx.doi.org/10.1161/CIRCIMAGING.117.006709.
  • [20] Barletta V, Fabiani I, Lorenzo C, Nicastro I, Di Bello V. Sudden cardiac death: a review focused on cardiovascular imaging. J Cardiovasc Echogr 2014;24(2):41. http://dx.doi.org/10.4103/2211-4122.135611.
  • [21] Goyal V, Jassal DS, Dhalla NS. Pathophysiology and prevention of sudden cardiac death. Can J Physiol Pharmacol 2015;94(3):237–44. http://dx.doi.org/10.1139/cjpp-2015-0366.
  • [22] Ochiai K, Takahashi S, Fukazawa Y. Arrhythmia detection from 2-lead ECG using convolutional denoising autoencoders. The 23rd ACM International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS); 2018. pp. 91–104.
  • [23] Karimui RY, Azadi S. Cardiac arrhythmia classification using the phase space sorted by Poincare sections. Biocybern Biomed Eng 2017;37(4):690–700. http://dx.doi.org/10.1016/j.bbe.2017.08.005.
  • [24] Gutiérrez-Gnecchi JA, Morfin-Magana R, Lorias-Espinoza D, del Carmen Tellez-Anguiano A, Reyes-Archundia E, Méndez-Pati no A, et al. DSP-based arrhythmia classification using wavelet transform and probabilistic neural network. Biomed Signal Process Control 2017;32:44–56. http://dx.doi.org/10.1016/j.bspc.2016.10.005.
  • [25] Tripathy RK, Zamora-Mendez A, De la O Serna JA, Paternina MRA, Arrieta JG, Naik GR. Detection of life threatening ventricular arrhythmia using digital Taylor Fourier transform. Front Physiol 2018;9:722. http://dx.doi.org/10.3389/fphys.2018.00722.
  • [26] Bhagyalakshmi V, Pujeri R, Devanagavi GD. GB-SVNN: genetic BAT assisted support vector neural network for arrhythmia classification using ECG signals. J King Saud Univ Comput Inf Sci 2018. http://dx.doi.org/10.1016/j.jksuci.2018.02.005 [in press].
  • [27] Savalia S, Emamian V. Cardiac arrhythmia classification by multi-layer perceptron and convolution neural networks. Bioengineering 2018;5(2):35. http://dx.doi.org/10.3390/bioengineering5020035.
  • [28] Dindin M, Umeda Y, Chazal F. Topological data analysis for arrhythmia detection through modular neural networks. arXiv e-prints. arXiv:1906.05795; 2019.
  • [29] Link MS, Pelliccia A, Manaker S, O'Connor FG. Screening to prevent sudden cardiac death in athletes. Waltham, MA: UpToDate; 2015, Available from: https://www.uptodate.com/contents/ screening-to-prevent-sudden-cardiac-death-in-athletes. [Accessed 21 October 2019].
  • [30] Kiuchi MG, Nolde JM, Villacorta H, Carnagarin R, Chan JJS-Y, Lugo-Gavidia LM, et al. New approaches in the management of sudden cardiac death in patients with heart failure-targeting the sympathetic nervous system. Int J Mol Sci 2019;20(10):2430. http://dx.doi.org/10.3390/ijms20102430.
  • [31] Sessa F, Anna V, Messina G, Cibelli G, Monda V, Marsala G, et al. Heart rate variability as predictive factor for sudden cardiac death. Aging 2018;10(2):166. http://dx.doi.org/10.18632/aging.101386.
  • [32] Camm AJ, Malik M, Bigger J, Breithardt G, Cerutti S, Cohen RJ, et al. Heart rate variability standards of measurement, physiological interpretation, and clinical use. Eur Heart J 1996;17(3):354–81. http://dx.doi.org/10.1161/01.CIR.93.5.1043.
  • [33] Sassi R, Cerutti S, Lombardi F, Malik M, Huikuri HV, Peng C-K, et al. Advances in heart rate variability signal analysis: joint position statement by the e-cardiology ESC working group and the European heart rhythm association co-endorsed by the Asia pacific heart rhythm society. EP Europace 2015;17(9):1341–53. http://dx.doi.org/10.1093/europace/euv015.
  • [34] Acharya UR, Joseph KP, Kannathal N, Lim CM, Suri JS. Heart rate variability: a review. Med Biol Eng Comput 2006;44 (12):1031–51. http://dx.doi.org/10.1007/s11517-006-0119-0.
  • [35] Voss A, Kurths J, Kleiner H, Witt A, Wessel N, Saparin P, et al. The application of methods of non-linear dynamics for the improved and predictive recognition of patients threatened by sudden cardiac death. Cardiovasc Res 1996;31(3):419–33. http://dx.doi.org/10.1016/S0008-6363(96)00008-9.
  • [36] Voss A, Schroeder R, Vallverdu M, Cygankiewicz I, Vazquez R, de Luna AB, et al. Linear and nonlinear heart rate variability risk stratification in heart failure patients. 2008 Computers in Cardiology. IEEE; 2008. p. 557–60. http://dx.doi.org/10.1109/CIC.2008.4749102.
  • [37] Sharma RR, Kumar A, Pachori RB, Acharya UR. Accurate automated detection of congestive heart failure using eigenvalue decomposition based features extracted from HRV signals. Biocybern Biomed Eng 2019;39(2):312–27. http://dx.doi.org/10.1016/j.bbe.2018.10.001.
  • [38] Murugappan M, Murukesan L, Omar I, Khatun S, Murugappan S. Time domain features based sudden cardiac arrest prediction using machine learning algorithms. J Med Imaging Health Inform 2015;5(6):1267–71. http://dx.doi.org/10.1166/jmihi.2015.1525.
  • [39] Raka AG, Naik GR, Chai R. Computational algorithms underlying the time-based detection of sudden cardiac arrest via electrocardiographic markers. Appl Sci 2017;7 (9):954. http://dx.doi.org/10.3390/app7090954.
  • [40] Ebrahimzadeh E, Pooyan M, Bijar A. A novel approach to predict sudden cardiac death (SCD) using nonlinear and time-frequency analyses from HRV signals. PLoS One 2014;9 (2):e81896. http://dx.doi.org/10.1371/journal.pone.0081896.
  • [41] Ebrahimzadeh E, Fayaz F, Ahmadi F, Dolatabad MR. Linear and nonlinear analyses for detection of sudden cardiac death (SCD) using ECG and HRV signals. Trends Res 2018;1 (1):1–8. http://dx.doi.org/10.15761/TR.1000105.
  • [42] Acharya UR, Fujita H, Sudarshan VK, Ghista DN, Lim WJE, Koh JE. Automated prediction of sudden cardiac death risk using Kolmogorov complexity and recurrence quantification analysis features extracted from HRV signals. 2015 IEEE International Conference on Systems, Man, and Cybernetics. IEEE; 2015. p. 1110–5. http://dx.doi.org/10.1109/SMC.2015.199.
  • [43] Khazaei M, Raeisi K, Goshvarpour A, Ahmadzadeh M. Early detection of sudden cardiac death using nonlinear analysis of heart rate variability. Biocybern Biomed Eng 2018;38 (4):931–40. http://dx.doi.org/10.1016/j.bbe.2018.06.003.
  • [44] Devi R, Tyagi HK, Kumar D. A novel multi-class approach for early-stage prediction of sudden cardiac death. Biocybern Biomed Eng 2019;39(3):586–98. http://dx.doi.org/10.1016/j.bbe.2019.05.011.
  • [45] Acharya UR, Fujita H, Sudarshan VK, Sree VS, Eugene LWJ, Ghista DN, et al. An integrated index for detection of sudden cardiac death using discrete wavelet transform and nonlinear features. Knowl Based Syst 2015;83:149–58. http://dx.doi.org/10.1016/j.knosys.2015.03.015.
  • [46] Ebrahimzadeh E, Foroutan A, Shams M, Baradaran R, Rajabion L, Joulani M, et al. An optimal strategy for prediction of sudden cardiac death through a pioneering feature-selection approach from HRV signal. Comput Methods Progr Biomed 2019;169:19–36. http://dx.doi.org/10.1016/j.cmpb.2018.12.001.
  • [47] Ebrahimzadeh E, Pooyan M. Early detection of sudden cardiac death by using classical linear techniques and timefrequency methods on electrocardiogram signals. J Biomed Sci Eng 2011;4(11):699. http://dx.doi.org/10.4236/jbise.2011.411087.
  • [48] Fujita H, Acharya UR, Sudarshan VK, Ghista DN, Sree SV, Eugene LWJ, et al. Sudden cardiac death (SCD) prediction based on nonlinear heart rate variability features and SCD index. Appl Soft Comput 2016;43:510–9. http://dx.doi.org/10.1016/j.asoc.2016.02.049.
  • [49] Goldberger AL, Amaral LA, Glass L, Hausdorff JM, Ivanov PC, Mark RG, et al. Physiobank, physiotoolkit, and physionet. Circulation 2000;101(23):e215–20. http://dx.doi.org/10.1161/01.CIR.101.23.e215.
  • [50] Ramakrishnan A, Prathosh A, Ananthapadmanabha T. Threshold-independent QRS detection using the dynamic plosion index. IEEE Signal Process Lett 2014;21(5):554–8. http://dx.doi.org/10.1109/LSP.2014.2308591.
  • [51] Marzbanrad F, Khandoker AH, Hambly BD, Ng E, Tamayo M, Lu Y, et al. Methodological comparisons of heart rate variability analysis in patients with type 2 diabetes and angiotensin converting enzyme polymorphism. IEEE J Biomed Health Inform 2016;20(1):55–63. http://dx.doi.org/10.1109/JBHI.2015.2480778.
  • [52] Richman JS, Moorman JR. Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol: Heart and Circul Physiol 2000;278(6):H2039–4. http://dx.doi.org/10.1152/ajpheart.2000.278.6.H2039.
  • [53] Manis G, Aktaruzzaman M, Sassi R. Bubble entropy: an entropy almost free of parameters. IEEE Trans Biomed Eng 2017;64(11):2711–8. http://dx.doi.org/10.1109/TBME.2017.2664105.
  • [54] Chen W, Wang Z, Xie H, Yu W. Characterization of surface EMG signal based on fuzzy entropy. IEEE Trans Neural Syst Rehabil Eng 2007;15(2):266–72. http://dx.doi.org/10.1109/TNSRE.2007.897025.
  • [55] Bandt C, Pompe B. Permutation entropy: a natural complexity measure for time series. Phys Rev Lett 2002;88(17):174102. http://dx.doi.org/10.1103/PhysRevLett.88.174102.
  • [56] Liang Z, Wang Y, Sun X, Li D, Voss LJ, Sleigh JW, et al. EEG entropy measures in anesthesia. Front Comput Neurosci 2015;9:16. http://dx.doi.org/10.3389/fncom.2015.00016.
  • [57] Peng C-K, Buldyrev SV, Havlin S, Simons M, Stanley HE, Goldberger AL. Mosaic organization of DNA nucleotides. Phys Rev E 1994;49(2):1685. http://dx.doi.org/10.1103/PhysRevE.49.1685.
  • [58] Bryce R, Sprague K. Revisiting detrended fluctuation analysis. Sci Rep 2012;2:315. http://dx.doi.org/10.1038/srep00315.
  • [59] Brennan M, Palaniswami M, Kamen P. Do existing measures of Poincare plot geometry reflect nonlinear features of heart rate variability? IEEE Trans Biomed Eng 2001;48(11):1342–7. http://dx.doi.org/10.1109/10.959330.
  • [60] Yan C, Li P, Liu C, Wang X, Yin C, Yao L. Novel gridded descriptors of Poincaré plot for analyzing heartbeat interval time-series. Comput Biol Med 2019;109:280–9. http://dx.doi.org/10.1016/j.compbiomed.2019.04.015.
  • [61] McFadden PD, Cook J, Forster L. Decomposition of gear vibration signals by the generalised S transform. Mech Syst Signal Process 1999;13(5):691–707. http://dx.doi.org/10.1006/mssp.1999.1233.
  • [62] Pinnegar CR, Mansinha L. The s-transform with windows of arbitrary and varying shape. Geophysics 2003;68(1):381–5. http://dx.doi.org/10.1190/1.1543223.
  • [63] McHugh ML. Multiple comparison analysis testing in ANOVA. Biochem Med 2011;21(3):203–9. http://dx.doi.org/10.11613/BM.2011.029.
  • [64] Stkapor K. Evaluating and comparing classifiers: review, some recommendations and limitations. The 10th International Conference on Computer Recognition Systems CORES 2017. Springer; 2017. p. 12–21. http://dx.doi.org/10.1007/978-3-319-59162-9_2.
  • [65] Kotsiantis S. Supervised machine learning: a review of classification techniques. Informatica 2007;31:249–68.
  • [66] Liu Z, Zuo MJ, Zhao X, Xu H. An analytical approach to fast parameter selection of Gaussian RBF kernel for support vector machine. J Inf Sci Eng 2015;31(2):691–710. http://dx.doi.org/10.6688/JISE.2015.31.2.18.
  • [67] Murukesan L, Murugappan M, Iqbal M, Saravanan K. Machine learning approach for sudden cardiac arrest prediction based on optimal heart rate variability features. J Med Imaging Health Inform 2014;4(4):521–32. http://dx.doi.org/10.1166/jmihi.2014.1287.
  • [68] Houshyarifar V, Amirani MC. Early detection of sudden cardiac death using Poincaré plots and recurrence plot-based features from HRV signals. Turk J Electr Eng Comput Sci 2017;25(2):1541–53. http://dx.doi.org/10.3906/elk-1509-149.
  • [69] Shen T-W, Shen H-P, Lin C-H, Ou Y-L. Detection and prediction of sudden cardiac death (SCD) for personal healthcare. 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE; 2007. p. 2575–8. http://dx.doi.org/10.1109/IEMBS.2007.4352855.
  • [70] Nguyen MT, Van Nguyen B, Kim K. Deep feature learning for sudden cardiac arrest detection in automated external defibrillators. Sci Rep 2018;8(1):17196. http://dx.doi.org/10.1038/s41598-018-33424-9.
  • [71] Plawiak P, Acharya UR. Novel deep genetic ensemble of classifiers for arrhythmia detection using ECG signals. Neural Comput Appl 2019;1–25. http://dx.doi.org/10.1007/s00521-018-03980-2.
  • [72] Mousavi S, Afghah F. Inter-and intra-patient ECG heartbeat classification for arrhythmia detection: a sequence to sequence deep learning approach. 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE; 2019. p. 1308–12.
  • [73] Hannun AY, Rajpurkar P, Haghpanahi M, Tison GH, Bourn C, Turakhia MP, et al. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat Med 2019;25(1):65. http://dx.doi.org/10.1038/s41591-018-0268-3.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e2fb9833-ec04-4f1f-9622-145dea06eaa1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.