PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electromagnetic wave absorption performance of UHPC incorporated with carbon black and carbon fiber

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study focuses on the electromagnetic wave absorption performance (EWAP) of ultra-high-performance concrete (UHPC) incorporated with carbon black (CB) and carbon fiber (CF) in 2-18 GHz frequency range (required for the radar wave absorbing materials). The reflectivity of the traditional UHPC was investigated and compared to the cement-based composites reported in the literatures, so as to illustrate the advantages of novel UHPCs with respect to EWAP. Afterwards, the effect of CB and CF on the compressive strength, complex permittivity and reflectivity of the novel UHPCs was investigated. The microstructure of the novel UHPCs was also explored via scanning electron microscopy to illustrate the mechanism of performance enhancement on incorporating CB and CF. The results indicated that EWAP of the traditional UHPC was similar or inferior (at specific frequencies) to the literature reported cement-based composites. However, EWAP of the novel UHPCs was significantly improved after reinforcing with CB or CF. A positive effect of CB and CF was also observed on the compressive strength of the developed UHPCs. This study provides avenues for the use of UHPCs in protecting structures for absorbing the electromagnetic waves and safeguarding these structures against extreme loads, including blast and penetration.
Rocznik
Strony
art. no. e71, 1--17
Opis fizyczny
Bibliogr. 47 poz., il., tab., wykr.
Twórcy
autor
  • Protective Structures Centre, Guangzhou University, Guangzhou, China
autor
  • School of Civil Engineering, Tianjin University, Tianjin, China
autor
  • School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, Australia
autor
  • Protective Structures Centre, Guangzhou University, Guangzhou, China
Bibliografia
  • 1. Guan H, Liu S, Duan Y, Cheng J. Cement based electromagnetic shielding and absorbing building materials. Cement Concr Compos. 2006;28(5):468-74.
  • 2. Roller C, Mayrhofer C, Riedel W, Thoma K. Residual load capacity of exposed and hardened concrete columns under explosion loads. Eng Struct. 2013;55:66-72.
  • 3. Ha JH, Yi NH, Choi JK, Kim JHJ. Experimental study on hybrid CFRP-PU strengthening effect on RC panels under blast loading. Compos Struct. 2011;93(8):2070-82.
  • 4. Yamaguchi M, Murakami K, Takeda K, Mitsui Y. Blast resistance of double-layered reinforced concrete slabs composed of precast thin plates. J Adv Concr Technol. 2011;9(2):177-191.
  • 5. Graybeal BA. Material property characterization of ultra high performance concrete. No. FHWA-HRT-06-103. United States: Federal Highway Administration. Office of Infrastructure Research and Development. 2006.
  • 6. Su Y, Li J, Wu C, Wu P, Li ZX. Effects of steel fibres on dynamic strength of UHPC. Constr Build Mater. 2016;114:708-18.
  • 7. Su Y, Li J, Wu C, Wu P, Li ZX. Influences of nano-particles on dynamic strength of ultra-high performance concrete. Compos B Eng. 2016;91:595-609.
  • 8. Van Mier JGM, Ruiz G, Andrade C, Yu RC. Properties of ultra high performance concrete (UHPC) in tension at high strain rates. Proceedings of the FraMCoS-8. 2013.
  • 9. Su Y, Wu C, Li J, Li ZX, Li W. Development of novel ultra-high performance concrete: from material to structure. Constr Build Mater. 2017;135:517-528.
  • 10. Wu C, Li J, Su Y. Development of Ultra-High Performance Concrete against Blasts (SBN: 9780081024959), Wood head Publishing, SBN: 9780081024959. 2018. https://www.elsevier.com/books/development-of-ultra-high-performanceconc rete-against-blasts/wu/978-0-08-102495-9.
  • 11. Liu J, Wu C, Chen X. Numerical study of ultra-high performance concrete under non-deformable projectile penetration. Constr Build Mater. 2017;135:447-458.
  • 12. Liu J, Wu C, Li J, Su Y, Shao R, Liu Z, Chen G. Experimental and numerical study of reactive powder concrete reinforced with steel wire mesh against projectile penetration. Int J Impact Eng. 2017;109:131-149.
  • 13. Liu J, Wu C, Su Y, Li J, Shao R, Chen G, Liu Z. Experimental and numerical studies of ultra-high performance concrete targets against high-velocity projectile impacts. Eng Struct. 2018;173:166-179.
  • 14. Wu H, Fang Q, Chen XW, Gong ZM, Liu JZ. Projectile penetration of ultra-high performance cement based composites at 510-1320 m/s. Constr Build Mater. 2015;74:188-200.
  • 15. Wang Z, Wang Z, Ning M. Optimization of electromagnetic wave absorption bandwidth of cement-based composites with doped expanded perlite. Construct Build Mater. 2020;259:119863.
  • 16. Zang W, Zheng Q, Wang D, Yu X, Han B. Electromagnetic properties and mechanisms of multi walled carbon nanotubes modified cementitious composites. Constr Build Mater. 2019;208:427-443.
  • 17. Li Z, Dong S, Wang X, Yu X, Han B. Electromagnetic wave absorbing property and mechanism of cementitious composites with different types of nano titanium dioxide. J Mater Civ Eng. 2020;32(5):04020073.
  • 18. Xie S, Ji Z, Li B, Zhu L, Wang J. Electromagnetic wave absorption properties of helical carbon fibers and expanded glass beads filled cement-based composites. Compos A Appl Sci Manuf. 2018;114:360-7.
  • 19. Cui X, Sun S, Han B, Yu X, Ouyang J, Zeng S, Ou J. Mechanical, thermal and electromagnetic properties of nanographite platelets modified cementitious composites. Compos A Appl Sci Manuf. 2017;93:49-58.
  • 20. Wang ZJ, Li KZ, Wang C. Freezing-thawing effects on electromagnetic wave reflectivity of carbon fiber cement based composites. Constr Build Mater. 2014;64:288-292.
  • 21. Wang B, Guo Z, Han Y, Zhang T. Electromagnetic wave absorbing properties of multi-walled carbon nanotube/cement composites. Constr Build Mater. 2013;46:98-103.
  • 22. Dai Y, Sun M, Liu C, Li Z. Electromagnetic wave absorbing characteristics of carbon black cement-based composites. Cement Concr Compos. 2010;32(7):508-513.
  • 23. Wang D, Yang P, Hou P, Zhang L, Zhang X, Zhou Z, Xie N, Huang S, Cheng X. Cement-based composites endowed with novel functions through controlling interface microstructure from Fe3O4@ SiO2 nanoparticles. Cement Concr Compos. 2017;80:268-276.
  • 24. He Y, Lu L, Sun K, Wang F, Hu S. Electromagnetic wave absorbing cement-based composite using Nano-Fe3O4 magnetic fluid as absorber. Cement Concr Compos. 2018;92:1-6.
  • 25. Guan B, Ding D, Wang L, Wu J, Xiong R. The electromagnetic wave absorbing properties of cement-based composites using natural magnetite powders as absorber. Mater Res Express. 2017;4(5):056103.
  • 26. Wang Z, Zhang T, Zhou L. Investigation on electromagnetic and microwave absorption properties of copper slag-filled cement mortar. Cement Concr Compos. 2016;74:174-181.
  • 27. Wen B, Zhao J, Duan Y, Zhang X, Zhao Y, Dong C, Liu S, Li T. Electromagnetic wave absorption properties of carbon powder from catalysed carbon black in X and Ku bands. J Phys D Appl Phys. 2006;39(9):1960.
  • 28. Gong H, Li Z, Zhang Y, Fan R. Piezoelectric and dielectric behavior of 0-3 cement-based composites mixed with carbon black. J Eur Ceram Soc. 2009;29(10):2013-9.
  • 29. Huang S, Li X, Liu F, Chang J, Xu D, Cheng X. Efect of carbon black on properties of 0-3 piezoelectric ceramic/cement composites. Curr Appl Phys. 2009;9(6):1191-4.
  • 30. Chan WWJ, Wu CML. Durability of concrete with high cement replacement. Cem Concr Res. 2000;30(6):865-879.
  • 31. Gu J, Li Y, Liang C, Tang Y, Tang L, Zhang Y, Kong J, Liu H, Guo Z. Synchronously improved dielectric and mechanical properties of wave-transparent laminated composites combined with outstanding thermal stability by incorporating iysozyme/POSS functionalized PBO fibers. J Mater Chem C. 2018;6(28):7652-60.
  • 32. Xie S, Ji Z, Yang Y, Hou G, Wang J. Electromagnetic wave absorption enhancement of carbon black/gypsum based composites filled with expanded perlite. Compos B Eng. 2016;106:10-19.
  • 33. Rhim HC, Buyukozturk O. Electromagnetic properties of concrete at microwave frequency range. Mater J. 1998;95(3):262-271.
  • 34. Büyüköztürk O, Rhim HC. Electromagnetic properties of concrete for nondestructive testing. In: Proceedings of the International Conference on Nondestructive Testing of Concrete in the Infrastructure (pp. 83-92). Society for Experimental Mechanics Dear born, Michigan. 1993.
  • 35. Zhang X, Xi Z. Building electromagnetic wave absorber and its application on the environment protection of habitation. J Build Mater. 2003;01:72-75.
  • 36. Zheng C, Li J, Zhao N, Guo X. Design and application of micro wave absorbing materials. Aerosp Mater Technol. 2004;05:1-5.
  • 37. Guru BS, Hiziroglu HR. Electromagnetic field theory fundamentals. Cambridge: Cambridge University Press; 2009. p. 351-416.
  • 38. Wang M, Duan Y, Liu S, Li X, Ji Z. Absorption properties of carbonyl-iron/carbon black double-layer microwave absorbers. J Magn Magn Mater. 2009;321(20):3442-6.
  • 39. Zhang Q, Tian Z, Tang W, Tang N, Zhao H, Lin H. Study of attenuation characteristics of electromagnetic waves in multilayer plasma slabs. J Appl Phys. 2019;125(9):094902.
  • 40. Zhang W, Xu H, Song Z, Han X, Wei X, Wu X, Li Y. Study on attenuation characteristics of electromagnetic waves in plasma superimposed artificial wave vector metasurface structure. J Phys D Appl Phys. 2019;53(6):065204.
  • 41. Li B, Duan Y, Zhang Y, Liu S. Electromagnetic wave absorption properties of cement-based composites flled with porous materials. Mater Des. 2011;32(5):3017-20.
  • 42. Li B, Duan Y, Zhang Y, Liu S. The electromagnetic characteristics of fly ash and absorbing properties of cement-based composites using fy ash as cement replacement. Constr Build Mater. 2011;27(1):184-188.
  • 43. Leyva ME, Barra GM, Moreira AC, Soares BG, Khastgir D. Electric, dielectric, and dynamic mechanical behavior of carbon black/ styrene-butadiene-styrene composites. J Polym Sci Part B Polym Phys. 2003;41(23):2983-97.
  • 44. Kezhi L, Chuang W, Hejun L, Fa L, Dangshe H. Refectivity of carbon-fiber-reinforced cement-based composites against electromagnetic waves. Rare Metal Mater Eng. 2007;36(10):1702.
  • 45. Zhao N, Zou T, Shi C, Li J, Guo W. Microwave absorbing properties of activated carbon-fiber felt screens (vertical-arranged carbon fibers)/epoxy resin composites. Mater Sci Eng, B. 2006;127(2-3):207-211.
  • 46. Du J, Liu S, Guan H. Research on the absorbing characteristics of cement matrix composites filled with carbon black-coated expanded polystyrene beads. Adv Cem Res. 2006;18(4):161-164.
  • 47. Hu SG, Tian K, Ding QJ. Design and test of new cement-based microwave absorbing materials. In: 8th International Symposium on Antennas, Propagation and EM Theory. IEEE. 2008. pp. 956-959.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e2f9941f-57dd-4196-a340-ef24374b364c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.