PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Understanding the microstructural evolution and fatigue behavior of aluminum 2319 fabricated by wire arc additive manufacturing

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Aluminum alloys have received substantial interest for the fabrication of complex and large size components for the aerospace industry via additive manufacturing processes. This work explores the fatigue performance of aluminum alloy 2319 fabricated by wire-based Directed Energy Deposition (DED) with Cold Metal Transfer (CMT) process, i.e., wire arc additive manufacturing (WAAM) technology. The as-deposited 2319 wall microstructure was composed by both columnar dendrites and equiaxed grains along the build direction (BD). Also, fine and coarse θ and θ′ precipitates were noticed in the WAAM printed 2319 wall due to repeated thermal cycles while fine precipitates were observed in wrought alloy. The microhardness measurements revealed a gradual decrease from the bottom to the top layers and varied between 65 and 86 HV. Tensile properties (yield strength, ultimate tensile strength, and elongation) measured in the horizontal and vertical directions were 99 ± 4 MPa, 268 ± 11 MPa 14.8 ± 1.5% and 96 ± 3 MPa, 257 ± 9 MPa, and 15.6 ± 2%, respectively. The WAAM 2319 fabricated in this work retained 72% of the strength of their AA2219-T62 wrought counterparts, which can be attributed to the large columnar grains that developed during the additive manufacturing process. The fatigue strength of WAAM 2319 specimen was 67 MPa, corresponding to 65% of the fatigue strength of AA2219-T62. Fracture surface analysis revealed the presence of small and large dimples, secondary micro-cracks, broken intermetallics, and inclusions. This work will provide novel insights and guidance for manufacturing near-net shape aluminum alloys by wire-based DED with improved tensile and fatigue properties.
Rocznik
Strony
art. no. e110, 2024
Opis fizyczny
Bibliogr. 55 poz., rys., tab., wykr.
Twórcy
  • Department of Mechanical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, 55, Hanyangdaehak‑ro, Sangnok‑gu, Ansan‑si, Gyeonggi‑do 15588, Republic of Korea
autor
  • Department of Mechanical Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015, India
  • Department of Mechanical Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015, India
  • Department of Mechanical Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015, India
autor
  • Department of Mechanical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, 55, Hanyangdaehak‑ro, Sangnok‑gu, Ansan‑si, Gyeonggi‑do 15588, Republic of Korea
  • AIDICOME Inc., 55, Hanyangdaehak‑ro, Ansan, Gyeonggi‑do 15588, Republic of Korea
  • Department of Mechanical and Industrial Engineering, UNIDEMI, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829‑516 Caparica, Portugal
  • Department of Materials Science, School of Science and Technology, CENIMATli3N, NOVA University Lisbon, Caparica, Portugal
Bibliografia
  • 1. Chang T, Fang X, Liu G, Zhang H, Huang K. Wire and arc additive manufacturing of dissimilar 2319 and 5B06 aluminum alloys. J Mater Sci Technol. 2022;124:65-75.
  • 2. Zhou Y, Lin X, Kang N, Huang W, Wang J, Wang Z. Influence of travel speed on microstructure and mechanical properties of wire + arc additively manufactured 2219 aluminum alloy. J Mater Sci Technol. 2020;37:143-53.
  • 3. Çam G. Prospects of producing aluminum parts by wire arc additive manufacturing (WAAM). Mater Today: Proc. 2022;62:77-85.
  • 4. Yilmaz O, Ugla AA. Shaped metal deposition technique in additive manufacturing: a review. Proc Inst Mech Eng, Part B: J Eng Manuf. 2016;230(10):1781-98.
  • 5. Rajkumar V, Vishnukumar M, Sowrirajan M, Kannan AR. Microstructure, mechanical properties and corrosion behaviour of incoloy 825 manufactured using wire arc additive manufacturing. Vacuum. 2022;203: 111324.
  • 6. Rodrigues TA, Bairrão N, Cipriano Farias FW, Shamsolhodaei A, Shen J, Zhou N, Maawad E, Schell N, Santos TG, Oliveira JP. Steel-copper functionally graded material produced by twin-wire and arc additive manufacturing (T-WAAM). Mater Des. 2022;213:110270.
  • 7. He C, Wei J, Li Y, Zhang Z, Tian N, Qin G, Zuo L. Improvement of microstructure and fatigue performance of wire-arc additive manufactured 4043 aluminum alloy assisted by interlayer friction stir processing. J Mater Sci Technol. 2023;133:183-94.
  • 8. Kannan AR, Kumar SM, Pramod R, Shanmugam NS, Vishnukumar M, Channabasavanna SG. Microstructure and corrosion resistance of Ni-Cu alloy fabricated through wire arc additive manufacturing. Mater Lett. 2022;308: 131262.
  • 9. Aldalur E, Suárez A, Veiga F. Metal transfer modes for wire arc additive manufacturing Al-Mg alloys: influence of heat input in microstructure and porosity. J Mater Process Technol. 2021;297: 117271.
  • 10. Vishnukumar M, Pramod R, Kannan AR. Wire arc additive manufacturing for repairing aluminium structures in marine applications. Mater Lett. 2021;299: 130112.
  • 11. Wang Z, Lin X, Wang L, Cao Y, Zhou Y, Huang W. Microstructure evolution and mechanical properties of the wire + arc additive manufacturing Al-Cu alloy. Addit Manuf. 2021;47: 102298.
  • 12. Xue C, Zhang Y, Mao P, Liu C, Guo Y, Qian F, Zhang C, Liu K, Zhang M, Tang S, Wang J. Improving mechanical properties of wire arc additively manufactured AA2196 Al-Li alloy by controlling solidification defects. Addit Manuf. 2021;43: 102019.
  • 13. Dong B, Cai X, Lin S, Li X, Fan C, Yang C, Sun H. Wire arc additive manufacturing of Al-Zn-Mg-Cu alloy: microstructures and mechanical properties. Addit Manuf. 2020;36: 101447.
  • 14. Cunningham CR, Flynn JM, Shokrani A, Dhokia V, Newman ST. Invited review article: strategies and processes for high quality wire arc additive manufacturing. Addit Manuf. 2018;22:672-86.
  • 15. Kannan AR, Kumar SM, Pramod R, Shanmugam NS, Palguna Y, Vishnukumar M. Microstructure and mechanical properties of dissimilar aluminium alloys AA5052-H32 and AA2219-T31 welded using cold metal transfer process. Mater Perform Charact. 2021;10:651-7.
  • 16. Ryan EM, Sabin TJ, Watts JF, Whiting MJ. The influence of build parameters and wire batch on porosity of wire and arc additive manufactured aluminium alloy 2319. J Mater Process Technol. 2018;262:577-84.
  • 17. Fang X, Zhang L, Li H, Li C, Huang K, Lu B. Microstructure evolution and mechanical behavior of 2219 aluminum alloys additively fabricated by the cold metal transfer process. Materials. 2018;11:812.
  • 18. Zhao H, Li Y, Sun Y, Dong Z, Liu H, Babkin A, Chang Y. Influence of deposit track on the forming and performance of wire arc additive manufactured 2319 aluminum alloy components. Weld Int. 2022;36:9-16.
  • 19. Arana M, Ukar E, Rodriguez I, Aguilar D, Álvarez P. Influence of deposition strategy and heat treatment on mechanical properties and microstructure of 2319 aluminium WAAM components. Mater Des. 2022;221: 110974.
  • 20. Jin P, Ren H, Liu Y, Sun Q. Microstructural evolution and mechanical properties of 2219 aluminum alloy deposited by wire and arc additive manufacturing. Adv Eng Mater. 2022. https://doi.org/10.1002/adem.202101799.
  • 21. Wang Z, Gao Y, Huang J, Wu C, Wang G, Liu J. Precipitation phenomena and strengthening mechanism of Al Cu alloys deposited by in-situ rolled wire-arc additive manufacturing. Mater Sci Eng: A. 2022. https://doi.org/10.1016/j.msea.2022.143770.
  • 22. Fang X, Zhang L, Chen G, Huang K, Xue F, Wang L, Zhao J, Lu B. Microstructure evolution of wire-arc additively manufactured 2319 aluminum alloy with interlayer hammering. Mater Sci Eng, A. 2021;800: 140168.
  • 23. Gu JL, Ding JL, Williams SW, Gu HM, Bai J, Zhai YC, Ma PH. The strengthening effect of inter-layer cold working and post-deposition heat treatment on the additively manufactured Al-6.3 Cu alloy. Mater Sci Eng: A. 2016;651:18-26.
  • 24. Cong B, Ding J, Williams S. Effect of arc mode in cold metal transfer process on porosity of additively manufactured Al-6.3%Cu alloy. Int J Adv Manuf Technol. 2015;76:1593-606.
  • 25. Xie C, Wu S, Yu Y, Zhang H, Hu Y, Zhang M, Wang G. Defect-correlated fatigue resistance of additively manufactured Al-Mg4.5Mn alloy with in situ micro-rolling. J Mater Process Technol. 2021;291:117039.
  • 26. Zhang T, Li H, Gong H, Wu Y, Ahmad AS, Chen X, Zhang X. Comparative analysis of cold and warm rolling on tensile properties and microstructure of additive manufactured Inconel 718. Arch Civ Mech Eng. 2022;22:44.
  • 27. Dharmendra C, Hadadzadeh A, Amirkhiz BS, Janaki Ram GD, Mohammadi M. Microstructural evolution and mechanical behavior of nickel aluminum bronze Cu-9Al-4Fe-4Ni-1Mn fabricated through wire-arc additive manufacturing. Addit Manuf. 2019;30:100872.
  • 28. Moussa C, Bernacki M, Besnard R, Bozzolo N. About quantitative EBSD analysis of deformation and recovery sub-structures in pure Tantalum. IOP Conf Ser: Mater Sci Eng. 2015;89:012038-45.
  • 29. Xiong ZH, Liu SL, Li SF, Shi Y, Yang YF, Misra RDK. Role of melt pool boundary condition in determining the mechanical properties of selective laser melting AlSi10Mg alloy. Mater Sci Eng, A. 2019;740-741:48-156.
  • 30. Tan Q, Zhang J, Mo N, Fan Z, Yin Y, Bermingham M, Liu Y, Huang H, Zhang M. A novel method to 3D-print fine-grained AlSi10Mg alloy with isotropic properties via inoculation with LaB6 nanoparticles. Addit Manuf. 2020;32: 101034.
  • 31. Gudur S, Simhambhatla S, Venkata Reddy N. Residual stress reduction in wire arc additively manufactured parts using in-situ electric pulses. Sci Technol Weld Join. 2022. https://doi.org/10.1080/13621718.2022.2142396.
  • 32. Somekawa H, Singh A, Inoue T, Mukai T. Enhancing fracture toughness of magnesium alloy by formation of low-angle grain boundary structure. Adv Eng Mater. 2010;12(9):837-42.
  • 33. Li Y, Cheng X, Guan Y. Ultrafine microstructure development in laser polishing of selective laser melted Ti alloy. J Mater Sci Technol. 2022;83:1-6.
  • 34. Zhou Y, Lin X, Kang N, Tang Y, Huang W, Wang Z. The heterogeneous band microstructure and mechanical performance in a wire + arc additively manufactured 2219 Al alloy. Addit Manuf. 2022;49: 102486.
  • 35. Abbaszadeh M, Ventzke V, Neto L, Riekehr S, Martina F, Kashaev N, Hönnige J, Williams S, Klusemann B. Compression behaviour of wire + Arc additive manufactured structures. Metals. 2021;11:877.
  • 36. Chen X, Wang X, Huan P, Hu Z, Wu Z, Zhang B, Nagaumi H. Effect of cold metal transfer mix synchro-pulse process on the overall morphology, microstructure and mechanical properties of wire + arc additively manufactured AA2219 alloy. Met Mater Int. 2023;29:552-63.
  • 37. Zhou Y, Lin X, Kang N, Wang Z, Tan H, Huang W. Hot deformation induced microstructural evolution in local-heterogeneous wire + arc additive manufactured 2219 Al alloy. J Alloy Compd. 2021;865: 158949.
  • 38. Zhou Y, Lin X, Kang N, Huang W, Wang Z. Mechanical properties and precipitation behavior of the heat-treated wire + arc additively manufactured 2219 aluminum alloy. Mater Charact. 2021;171: 110735.
  • 39. Huang Z, Huang J, Yu X, Liu G, Fan D. The microstructure and mechanical properties of high-strength 2319 aluminum alloys fabricated by wire double-pulsed metal inert gas arc additive manufacturing. J Mater Eng Perform. 2023;32:1810-23.
  • 40. Cong B, Qi Z, Qi B, Sun H, Zhao G, Ding J. A comparative study of additively manufactured thin wall and block structure with Al-6.3%Cu alloy using cold metal transfer process. Appl Sci. 2017;7(3):275.
  • 41. Kannan AR, Palguna Y, Korla R, Kumar SM, Pramod R, Shanmugam NS. Hot tensile deformation and fracture behavior of wire arc additive manufactured hastelloy C-276. Weld World. 2023. https://doi.org/10.1007/s40194-023-01462-1.
  • 42. Bai JY, Yang CL, Lin SB, Dong BL, Fan CL. Mechanical properties of 2219-Al components produced by additive manufacturing with TIG. Int J Adv Manuf Technol. 2016;86:479-85.
  • 43. ASTM B209/B209M-21a Standard specification for aluminum and aluminum-alloy sheet and plate. West Conshohocken, PA; ASTM International. 2021. https://doi.org/10.1520/B0209_B0209M-21A.
  • 44. Liu G, Xiong J. External filler wire based GMA-AM process of 2219 aluminum alloy. Mater Manuf Process. 2020;35(11):1268-77.
  • 45. ASM. Handbook, fatigue and fracture, vol. 19. ASM International. 1996 https://asm.matweb.com/search/SpecificMaterial.asp?bassnum=ma2219t62. Accessed 9 Sept 2022.
  • 46. Nezhadfar PD, Thompson S, Saharan A, Phan N, Shamsaei N. Structural integrity of additively manufactured aluminum alloys: effects of build orientation on microstructure, porosity, and fatigue behavior. Addit Manuf. 2021;47: 102292.
  • 47. Brandl E, Heckenberger U, Holzinger V, Buchbinder D. Additive manufactured AlSi10Mg samples using selective laser melting (SLM): microstructure, high cycle fatigue, and fracture behavior. Mater Des. 2012;34:159-69.
  • 48. Qin Z, Kang N, Mansori ME, Wang Z, Wang H, Lin X, Chen J, Huang W. Anisotropic high cycle fatigue property of Sc and Zr-modified Al-Mg alloy fabricated by laser powder bed fusion. Addit Manuf. 2022;49: 102514.
  • 49. Hassani-Gangaraj SM, Cho KS, Voigt HJL, Guagliano M, Schuh CA. Experimental assessment and simulation of surface nanocrystallization by severe shot peening. Acta Mater. 2015;97:105-15.
  • 50. Wagner L, Mhaede M, Wollmann M, Altenberger I, Sano Y. Surface layer properties and fatigue behavior in Al 7075-T73 and Ti-6Al-4V comparing results after laser peening. Shot Peen Ballburn, Int J Struct Integr. 2011;2(2):185-99.
  • 51. Wang Z, Wang B, Zhang Z, Xue P, Hao Y, Zhao Y, Ni D, Wang G, Ma Z. Enhanced fatigue properties of 2219 Al alloy joints via bobbin tool friction stir welding. Acta Metall Sin (Engl Lett). 2022. https://doi.org/10.1007/s40195-022-01465-9.
  • 52. Zhang Z, Huang C, Chen S, Wan M, Yang M, Ji S, Zeng W. Effect of microstructure on high cycle fatigue behavior of 211Z.X-T6 aluminum alloy. Metals. 2022;12(3):387.
  • 53. Awd M, Siddique S, Johannsen J, Emmelmann C, Walther F. Very high-cycle fatigue properties and microstructural damage mechanisms of selective laser melted AlSi10Mg alloy. Int J Fatigue. 2019;124:55-69.
  • 54. Wei J, He C, Qie M, Li Y, Zhao Y, Qin G, Zuo L. Microstructure refinement and mechanical properties enhancement of wire-arc additive manufactured 2219 aluminum alloy assisted by interlayer friction stir processing. Vacuum. 2022;203: 111264.
  • 55. Sun R, Li L, Zhu Y, Guo W, Peng P, Cong B, Sun J, Che Z, Li B, Guo C, Liu L. Microstructure, residual stress and tensile properties control of wire-arc additive manufactured 2319 aluminum alloy with laser shock peening. J Alloy Compd. 2018;747:255-65.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e2f28ab1-821b-4701-810d-fbd0ecd73d36
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.