Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The roadway surrounding rock is often subjected to severe damage under dynamic loading at greater mining depths. To study the dynamic response of prestressed anchors, the damage characteristics of anchor solids with different prestresses and number of impacts under dynamic and static loads were investigated by improving the Hopkinson bar equipment. The effect of prestress on stress wave transmission was obtained, and the laws and reasons for axial force loss under static and dynamic loads were analyzed. The damage characteristics of anchor solids were determined experimentally. The results show that with an increase in prestress from 15 to 30 MPa, the peak value of the stress wave gradually increases and the decay rate gradually decreases. Shear damage occurred at the impact end of the specimen, combined tension and shear damage occurred at the free end, and fracture occurred in the middle. With an increase in the number of impacts, the damage to the anchor solid specimens gradually increased, and the prestressing force gradually decreased. After impact, the axial force of the various prestressed anchor solid specimens gradually increased; however, the anchor bar with a 17 MPa prestressing force had the slowest rate of axial force loss during impact, withstanding a greater number of impacts. In on-site applications, after three explosions, the displacement on both sides of the tunnel supported by 17 MPa prestressed anchor rods could be controlled within 0.3 m, with an average displacement of 206, 240, and 283 mm, respectively, increasing by 16.5% and 17.9%. This study, based on theoretical analysis and laboratory research combined with field application provides guidance for the anchor support of a dynamic loading tunnel.
Wydawca
Czasopismo
Rocznik
Tom
Strony
141--154
Opis fizyczny
Bibliogr. 21 poz., fot., rys., tab., wykr.
Twórcy
autor
- Anhui University of Science and Technology, School of Mining Engineering, Anhui Province Coal Mine Safety Mining Equipment Manufacturing Innovation Center, Huainan 232001, China
autor
- Anhui University of Science and Technology, School of Mining Engineering, Anhui Province Coal Mine Safety Mining Equipment Manufacturing Innovation Center, Huainan 232001, China
autor
- Industrial and Energy Administration of Xishui County, Zunyi 564699, China
autor
- Great Wall No.6 Mining Co. LTD, Etuokeqianqi 016200, China
autor
- Great Wall No.6 Mining Co. LTD, Etuokeqianqi 016200, China
autor
- Shandong Huakun Geological Engineering Co. LTD, Taian 271413, China
autor
- Shandong Huakun Geological Engineering Co. LTD, Taian 271413, China
Bibliografia
- [1] W. Korzeniowski, K. Skrzypkowski, L. Herezy, Laboratory method for ev aluating the characteristics of expansionrock bolts subjected to axial tension. Archives of Mining Sciences 60, 1, 209-224 (2022).DOI: https://doi.org/10.1515/amsc-2015-0014.
- [2] K . Skrzypkowski, Laboratory testing of a long expansion rock bolt support for energy-absorbing applications. E3SWeb of Conferences 9, 00004 (2018). DOI: https://doi.org/10.1051/e3sconf/20182900004.
- [3] M. Sharifzadeh, J.F. Luo, B. Crompton, Dynamic performance of energy-absorbing rockbolts based on laboratorytest results. Part I: Evolution, deformation mechanisms, dynamic performance and classification. Tunnelling andUnderground Space Technology 105, 103510 (2020). DOI: https://doi.org/10.1016/j.tust.2020.103510.
- [4] Y. Yokota, Z.Y. Zhao, W. Nie, K. Date, K. Iwano, Y. Okada, Experimental and Numerical Study on the InterfaceBehaviour Between the Rock Bolt and Bond Material. Rock Mechanics and Rock Engineering 52, 869-879 (2019).DOI: https://doi.org/10.1007/s00603-018-1629-4.
- [5] I. CoŞkun, H. Engin, A. Özmutlu, Dynamic stress and displacement in an elastic half-space with a cylindricalcavity. Shock and Vibration 18, 827-838 (2011). DOI: https://doi.org/10.3233/SAV-2010-0602.
- [6] H .E. Lawson., D. Tesarik, M.K. Larson, H. Abraham, Effects of overburden characteristics on dynamic failure inunderground coal mining. International Journal of Mining Science and Technology 27, 121-129(2017).DOI: http://dx.doi.org/10.1016/j.ijmst.2016.10.001.
- [7] N. Yugo, W. Shin, Analysis of blasting damage in adjacent mining excavations. Journal of Rock Mechanics andGeotechnical Engineering 7, 282-290 (2015). DOI: http://dx.doi.org/10.1016/j.jrmge.2014.12.005.
- [8] X. Yi, P.K. Kaiser, Impact Testing for Rockbolt Design in Rockburst Conditions. Int. J. Rock Mech. Min. Sci. &Geomech. Abstr. 31, 6, 671-685 (1994).
- [9] A. Ansell, Laboratory testing of a new type of energy absorbing rock bolt. Tunnelling and Underground SpaceTechnology 20, 291-300 (2005). DOI: https://doi.org/10.1016/j.tust.2004.12.001.
- [10] A.H. Aliu, B. Abass, T. Fred, Impact load effects on screw anchors in concrete. Engineering Structures 251, 113491(2022). DOI: https://doi.org/10.1016/j.engstruct.2021.113491.
- [11] C.L.Charlie, D. Chantale, Performance of D-Bolts Under Dynamic Loading. Rock Mech. Rock Eng. 45, 193-204(2012). DOI: https://doi.org/10.1007/s00603-011-0202-1.
- [12] G. Solomos, M. Berra, Testing of anchorages in concrete under dynamic tensile loading. Materials and Structures39, 695-706 (2006). DOI: https://doi.org/10.1617/s11527-006-9112-1.
- [13] Y.H. Wu, X.S. Liu, Y.L. Tan, Q. Ma, D.Y. Fan, M.J. Yang, X. Wang, G.Q. Li, Mechanical Properties and FailureMechanism of Anchored Bedding Rock Material under Impact Loading, Materials 15, 6560 (2022).DOI: https://doi.org/10.3390/ma15196560.
- [14] F. Tahmasebinia, C.G. Zhang, I. Canbulat, O. Vardar, S. Saydam, Numerical and analytical simulation of thestructural behaviour of fully grouted cable bolts under impulsive loading. International Journal of Mining Scienceand Technology 28, 807-811 (2018). DOI: https://doi.org/10.1016/j.ijmst.2018.08.012.
- [15] N .I. Aleksandrova, M.V. Ayzenberg-Stepanenko, E. . Sher, Modeling the elastic wave propagation in a blockmedium under the impulse loading. Journal of Mining Science 45, 2, 21-32(2009).DOI: https://doi.org/10.1007/s10913-009-0054-1.
- [16] J.A. Vallejos, E. Marambio, L. Burgos, C.V. Gonzalez, Numerical modelling of the dynamic response of threadbarunder laboratory-scale conditions. Tunnelling and Underground Space Technology 100, 103263 (2020).DOI: https://doi.org/10.1016/j.tust.2019.103263.
- [17] Y.J. Kim, R.G. Wight, M.F. Green, Flexural Strengthening of RC Beams with Prestressed CFRP Sheets: Developmentof Nonmetallic Anchor Systems. Journal of Composites for Construction 12, 1, 35-43 (2008).DOI: https://doi.org/10.1061/(ASCE)1090-0268(2008)12:1(35).
- [18] X. Gao, J.Q. Jia, G.X. Mei, X.H. Bao, L.H. Zhang, X.P. Liao, A New Prestress Loss Calculation Model of AnchorCable in Pile-Anchor Structure. Mathematics 10, 1260 (2022). DOI: https://doi.org/10.3390/math10081260.
- [19] L. Guo, X.A. Dong, Z. Wang, H. Li, Y.L. Sun, Analysis of Re-T ensioning Time of Anchor Cable Based on NewPrestress Loss Model. Engineering Mathematics 9, 1094 (2021). DOI: https://doi.org/10.3390/math9101094.
- [20] C. Burton, P. Visintin, M. Griffith, J. Vaculik, Stress wave foundation, Laboratory investigation of pull-out capacityof chemical anchors in individual new and vintage masonry units under quasi-static, cyclic and impact load.Structures 34, 901-930 (2021). DOI: https://doi.org/10.1016/j.istruc.2021.08.016.
- [21] P.A. Persson, The relationship between strain energy, rock damage, fragmentation, and throw in rock blasting.Fragblast 1, 99-110 (1997). DOI: https://doi.org/10.1080/13855149709408392.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e2eec7e3-e882-40e9-9e22-5b2c12228586