PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Subzero temperatures and low-frequency impact on MFC piezoelectric transducers for wireless sensor applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This research paper is a continuation of a prior study [12]that focused on the positive temperature range. The current work investigates the behavior of a laminated Macro Fiber Composite (MFC) piezoelectric transducer when exposed to negative temperatures. The study aims to understand the sensitivity of the transducer under varying ambient temperatures and frequencies, particularly for applications in wireless sensor networks. The integrated Macro Fiber Composite piezoelectric transducer is both theoretically modeled and empirically verified. Experimental tests involve subjecting the laminated MFC piezoelectric transducer to sinusoidal forces generated by an electro-pulse waveform generator, while a thermal chamber is used for temperature control. Controlled displacement is applied to the transducer at low-frequency (5 to 25 Hz) ranges and different moderate temperatures (0 to -40 degrees Celsius). The results highlight the significant influence of temperature and excitation frequency on the generated voltage by the MFC transducer.
Rocznik
Strony
art. no. 183316
Opis fizyczny
Bibliogr. 45 poz., fot., rys., tab., wykr.
Twórcy
  • Department of Engineering Processes Automation and Integrated Manufacturing Systems, Silesian University of Technology, Poland
  • Department of Engineering Processes Automation and Integrated Manufacturing Systems, Silesian University of Technology, Poland
  • Department of Mechanics and Computational Engineering, Silesian University of Technology, Poland
Bibliografia
  • 1. Ahmed, R. et al.: A review on energy harvesting approaches for renewable energies from ambient vibrations and acoustic waves using piezoelectricity. Smart Mater. Struct. 26, 8, 085031 (2017). https://doi.org/10.1088/1361-665X/aa7bfb.
  • 2. Aliabadi, M.H.F., Khodaei, Z.S.: Structural Health Monitoring for Advanced Composite Structures. World Scientific (2017).https://doi.org/10.1142/q0114
  • 3. Appiah, A.N.S. et al.: Hardfacing of mild steel with wear-resistant Ni-based powders containing tungsten carbide particles using powder plasma transferred arc welding technology. Materials Science-Poland. 40, 3, 42–63 (2022). https://doi.org/10.2478/msp-2022-0033.
  • 4. Appiah, A.N.S. et al.: Powder Plasma Transferred Arc Welding of Ni-Si-B+60 wt%WC and Ni-Cr-Si-B+45 wt%WC for Surface Cladding of Structural Steel. Materials. 15, 14, 4956 (2022). https://doi.org/10.3390/ma15144956.
  • 5. Banerjee, S. et al.: A critical review on lead-free hybrid materials for next generation piezoelectric energy harvesting and conversion. Ceramics International. 47, 12, 16402–16421 (2021). https://doi.org/10.1016/j.ceramint.2021.03.054.
  • 6. Borzea, C. et al.: Temperature Influence on the Performances of a PZT-5H Piezoelectric Harvester. In: 2021 12th International Symposium on Advanced Topics in Electrical Engineering (ATEE). pp. 1–6 (2021). https://doi.org/10.1109/ATEE52255.2021.9425102.
  • 7. Cao, X. et al.: Piezoelectric Nanogenerators Derived Self‐Powered Sensors for Multifunctional Applications and Artificial Intelligence. Adv Funct Materials. 31, 33, 2102983 (2021). https://doi.org/10.1002/adfm.202102983.
  • 8. Choi, H.S.: Architectural Simulation of Hybrid Energy Harvesting: A Design Experiment in Lanzarote Island. Applied Sciences. 11, 24, 12146 (2021). https://doi.org/10.3390/app112412146.
  • 9. Covaci, C., Gontean, A.: Piezoelectric Energy Harvesting Solutions: A Review. Sensors. 20, 12, 3512 (2020). https://doi.org/10.3390/s20123512.
  • 10. Degefa, T.G. et al.: Modelling and Study of the Effect of Geometrical Parameters of Piezoelectric Plate and Stack. Applied Sciences. 11, 24, 11872 (2021). https://doi.org/10.3390/app112411872.
  • 11. Di Rito, G. et al.: Dynamic Modelling and Experimental Characterization of a Self-Powered Structural Health-Monitoring System with MFC Piezoelectric Patches. Sensors. 20, 4, 950 (2020). https://doi.org/10.3390/s20040950.
  • 12. Degefa, G. T. et al.: The Study of the Influence of Temperature and Low Frequency on the Performance of the Laminated MFC Piezoelectric Energy Harvester. Applied Sciences. 12, 23, 12135 (2022). https://doi.org/10.3390/app122312135.
  • 13. Gao, S. et al.: High-Performance Wireless Piezoelectric Sensor Network for Distributed Structural Health Monitoring. International Journal of Distributed Sensor Networks. 12, 3, 3846804 (2016). https://doi.org/10.1155/2016/3846804.
  • 14. Gholikhani, M. et al.: A critical review of roadway energy harvesting technologies. Applied Energy. 261, 114388 (2020). https://doi.org/10.1016/j.apenergy.2019.114388.
  • 15. Grzybek, D., Micek, P.: Piezoelectric beam generator based on MFC as a self-powered vibration sensor. Sensors and Actuators A: Physical. 267, 417–423 (2017). https://doi.org/10.1016/j.sna.2017.10.053.
  • 16. Hirst, J. et al.: Long-term power degradation testing of piezoelectric vibration energy harvesters for low-frequency applications. Eng. Res. Express. 2, 3, 035026 (2020). https://doi.org/10.1088/2631-8695/abaf09.
  • 17. Jasim, M.H. et al.: Analytical analysis of jute–epoxy beams subjected to low-velocity impact loading. International Journal of Structural Integrity. 12, 3, 428–438 (2020). https://doi.org/10.1108/IJSI-04-2020-0037.
  • 18. Karadimas, G., Salonitis, K.: Ceramic Matrix Composites for Aero Engine Applications—A Review. Applied Sciences. 13, 5, 3017 (2023). https://doi.org/10.3390/app13053017.
  • 19. Kargar, S.M., Hao, G.: An Atlas of Piezoelectric Energy Harvesters in Oceanic Applications. Sensors. 22, 5, 1949 (2022). https://doi.org/10.3390/s22051949.
  • 20. Manish, Sukesha: Piezoelectric energy harvesting in wireless sensor networks. In: 2015 2nd International Conference on RecentAdvances in Engineering & Computational Sciences (RAECS). pp. 1–6 (2015). https://doi.org/10.1109/RAECS.2015.7453339.
  • 21. Miclea, C. et al.: Effect of temperature on the main piezoelectric parameters of a soft PZT ceramic. ROMANIAN JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY. 10, 243–250 (2007).
  • 22. Mouapi, A. et al.: Autonomous Wireless Sensors Network Based on Piezoelectric Energy Harvesting. Open Journal of Antennas andPropagation. 4, 3, 138–157 (2016). https://doi.org/10.4236/ojapr.2016.43011.
  • 23. Nabavi, S.F. et al.: An ocean wave-based piezoelectric energy harvesting system using breaking wave force. International Journal of Mechanical Sciences. 151, 498–507 (2019). https://doi.org/10.1016/j.ijmecsci.2018.12.008.
  • 24. Nastro, A. et al.: Wearable Ball-Impact Piezoelectric Multi-Converters for Low-Frequency Energy Harvesting from Human Motion. Sensors. 22, 3, 772 (2022). https://doi.org/10.3390/s22030772.
  • 25. Nguyen, V.-C. et al.: Printing smart coating of piezoelectric composite for application in condition monitoring of bearings. Materials &Design. 215, 110529 (2022). https://doi.org/10.1016/j.matdes.2022.110529.
  • 26. Płaczek, M., Kokot, G.: Modelling and Laboratory Tests of the Temperature Influence on the Efficiency of the Energy Harvesting System Based on MFC Piezoelectric Transducers. Sensors (Basel). 19, 7, 1558 (2019). https://doi.org/10.3390/s19071558.
  • 27. Qian, H.-M. et al.: Structural fatigue reliability analysis based on active learning Kriging model. International Journal of Fatigue. 172, 107639 (2023). https://doi.org/10.1016/j.ijfatigue.2023.107639.
  • 28. Qian, H.-M. et al.: Time-Variant Reliability Analysis for a Complex System Based on Active-Learning Kriging Model. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering. 9, 1, 04022055 (2023). https://doi.org/10.1061/AJRUA6.RUENG-962.
  • 29. Qing, X. et al.: Piezoelectric Transducer-Based Structural Health Monitoring for Aircraft Applications. Sensors. 19, 3, 545 (2019). https://doi.org/10.3390/s19030545.
  • 30. Qing, X.P. et al.: Built-in Sensor Network for Structural Health Monitoring of Composite Structure. Journal of Intelligent Material Systems and Structures. 18, 1, 39–49 (2007). https://doi.org/10.1177/1045389X06064353.
  • 31. Ramírez, J.M. et al.: Energy harvesting for autonomous thermal sensing using a linked E-shape multi-beam piezoelectric device in a low frequency rotational motion. Mechanical Systems and Signal Processing. 133, 106267 (2019). https://doi.org/10.1016/j.ymssp.2019.106267.
  • 32. Randriantsoa, A.N.A. et al.: Recent Advances in Hybrid Energy Harvesting Technologies Using Roadway Pavements: A Review of the Technical Possibility of Using Piezo-thermoelectrical Combinations. Int. J. Pavement Res. Technol. (2022). https://doi.org/10.1007/s42947-022-00164-z.
  • 33. Ravikumar, C., Markevicius, V.: Development of Ultrasound Piezoelectric Transducer-Based Measurement of the Piezoelectric Coefficient and Comparison with Existing Methods. Processes. 11, 8, 2432 (2023). https://doi.org/10.3390/pr11082432.
  • 34. Salazar, R. et al.: Fatigue in piezoelectric ceramic vibrational energy harvesting: A review. Applied Energy. 270, 115161 (2020). https://doi.org/10.1016/j.apenergy.2020.115161.
  • 35. Sathiyamoorthy, S., Bharathi, N.: Hybrid Energy Harvesting using Piezoelectric Materials, Automatic Rotational Solar Panel, Vertical Axis Wind Turbine. Procedia Engineering. 38, 843–852 (2012). https://doi.org/10.1016/j.proeng.2012.06.106.
  • 36. Snopiński, P. et al.: Investigation of Microstructure and Mechanical Properties of SLM-Fabricated AlSi10Mg Alloy Post-Processed Using Equal Channel Angular Pressing (ECAP). Materials. 15, 22, 7940 (2022). https://doi.org/10.3390/ma15227940.
  • 37. Sun, C. et al.: On Piezoelectric Energy Harvesting from Human Motion. Journal of Power and Energy Engineering. 7, 1, 155–164 (2019). https://doi.org/10.4236/jpee.2019.71008.
  • 38. Wang, S. et al.: Fatigue life prediction of composite suspension considering residual stress and crack propagation. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 237, 6, 1299–1312 (2023). https://doi.org/10.1177/09544070221091683.
  • 39. Xie, X.D. et al.: Energy harvesting from transverse ocean waves by a piezoelectric plate. International Journal of Engineering Science. 81, 41–48 (2014). https://doi.org/10.1016/j.ijengsci.2014.04.003.
  • 40. Yang, Y. et al.: Vibration energy harvesting using macro-fiber composites. Smart Mater. Struct. 18, 11, 115025 (2009). https://doi.org/10.1088/0964-1726/18/11/115025.
  • 41. An Active Diagnostic System for Structural Health Monitoring of Rocket Engines -Xinlin P. Qing, Hian-Leng Chan, Shawn J. Beard, Amrita Kumar, 2006, https://journals.sagepub.com/doi/abs/10.1177/1045389X06059956?journalCode=jima, last accessed 2023/05/11.
  • 42. Composite Material -an overview | ScienceDirect Topics, https://www.sciencedirect.com/topics/social-sciences/composite-material, last accessed 2023/07/01.
  • 43. MacroFiberCompositeTM, https://www.smart-material.com/MFC-product-mainV2.html, last accessed 2023/12/09.
  • 44. Piezoelectric Effect -an overview | ScienceDirect Topics, https://www.sciencedirect.com/topics/engineering/piezoelectric-effect, last accessed 2023/05/11.
  • 45. Piezoelectric energy harvesting for self‐powered wearable upper limb applications -Liu -2021 -Nano Select -Wiley Online Library, https://onlinelibrary.wiley.com/doi/full/10.1002/nano.202000242,last accessed 2023/05/11.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e2e9d735-283e-431a-b0d3-be6695158474
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.