PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Closed system of coupling effects in generalized thermo-elastoplasticity

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the field equations of the generalized coupled thermoplasticity theory are derived using the postulates of classical thermodynamics of irreversible processses. Using the Legendre transformations two new thermodynamics potentials P and S depending upon internal thermodynamic forces Π are introduced. The most general form for all the thermodynamics potentials are assumed instead of the usually used additive form. Due to this assumption, it is possible to describe all the effects of thermomechanical couples and also the elastic-plastic coupling effects observed in such materials as rocks, soils, concretes and in some metalic materials. In this paper not only the usual postulate of existence of a dissipation qupotential (the Gyarmati postulate) is used to derive the velocity equation. The plastic flow constitutive equations have the character of non-associated flow laws even when the Gyarmati postulate is assumed. In general formulation, the plastic strain rate tensor is normal to the surface of the generalized function of plastic flow defined in the the space of internal thermodynamic forces Π but is not normal to the yield surface. However, in general formulation and after the use the Gyarmati postulate, the direction of the sum of the plastic strain rate tensor and the coupled elastic strain rate tensor is normal to the yield surface.
Rocznik
Strony
461--483
Opis fizyczny
Bibliogr. 45 poz., tab., wykr.
Twórcy
  • Opole University of Technology, Faculty of Applications of Chemistry and Mechanics, 45-036 Opole, ul. Luboszycka 7, POLAND
Bibliografia
  • [1] Śloderbach Z. (1980): Bifurcations criteria for equilibrium states in generalized thermoplasticity. – Doctor’s Thesis [in Polish], IFTR-Report, No 37/1980, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, pp.1-100.
  • [2] Śloderbach Z. (1983): Generalized Coupled Thermoplasticity. Part I. Fundamental Equations and Identities. – Archives of Mechanics, vol.35, pp.337-349.
  • [3] Śloderbach Z. (1983): Generalized Coupled Thermoplasticity. Part II. On the Uniqueness and Bifurcations criteria. – Archives of Mechanics, No.35, vol.3, pp.351-367.
  • [4] Bever M., Holt D.L. and Titchener A.L. (1973): Stored Energy of Cold Work. – Progress in Material Sciences, vol.17, Pergamon Press.
  • [5] Oliferuk W., Korbel A. and Grabski M.W. (1996): Mode of deformation and the rate of energy storage during uniaxial tensile deformation of austenitic steel. – Materials Science and Engineering, A 220, Elsevier Science S.A., pp.123-128.
  • [6] Oliferuk W. (1997): Energy storage process and its relation to material structure in austenit steel tested in simple tension [in Polish]. – Habilitation Thesis, IFTR-Reports, No 11/1997, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, pp.1-108.
  • [7] Śloderbach Z. and Rechul Z. (2006): A thermodynamic approach to the stored energy concept. – Journal of Technical Physics, vol. XLVII, 2, pp.83-102.
  • [8] Śloderbach Z. and Pająk J. (2013): Stored energy of plastic deformations in tube bending processes. – International Journal of Applied Mechanics and Engineering, vol.18, No.1, Zielona Gora, pp.235-248.
  • [9] Perzyna P. (1978): Thermodynamics of inelastic materials [in Polish]. – Warsaw: PWN.
  • [10] Lehmann Th. (1972): Some thermodynamic considerations of phenomenological theory of non-isothermal elastic-plastic deformations. – Archives of Applied Mechanics, vol.24, pp.975-989.
  • [11] Prager W. (1958): Non-isothermal plastic deformation. – Proceedings Konikladen Nederladen Akademie Wetenschap., B61, pp.176-182.
  • [12] Raniecki B. (1976): An Introduction to the Concept of Applied Thermoplasticity. – Material Center, Royal Institute of Technology, Stockholm, pp.1-96.
  • [13] Raniecki B. (1977): Problems of Applied Thermoplasticity. – Habilitation Thesis [in Polish], in IFTR-Reports, No.29/1977, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, pp.1-120.
  • [14] Raniecki B. and Sawczuk A. (1973): Thermal effects in plasticity. Part I: Coupled theory. – Zeitschrift für Angewandte Mathematik und Mechanik-ZAMM, vol.55, pp.232-241.
  • [15] Raniecki B. and Sawczuk A. (1973): Thermal effects in plasticity. Part II: Uniqueness and applications. – Zeitschrift für Angewandte Mathematik und Mechanik-ZAMM, vol.55, pp.363-373.
  • [16] Raniecki B. and Thermann K. (1978): Infinitesimal Thermoplasticity and Kinematics of Finite Elastic-Plastic Deformations. Basic Concepts. – Mitteilungen aus dem Institut fur Mechanik, No.2, Ruhr-Universitat, Bochum.
  • [17] Ziegler H. (1963): Some Extremum Principles in Irreversible Thermodynamics with Application to Continuum Mechanics. – Progress in Solid Mechanics, North Holland, Amsterdam, pp.91-193.
  • [18] Nye J.F. (1957): Physical Properties of Crystals. – Oxford: Clarendon Press.
  • [19] Newnham R.E. (2005): Properties of Materials. – New York: Oxford University Press Inc.
  • [20] Benall A. and Bigoni D. (2004): Effects of temperature and thermo-mechanical couplings on material instabilities and strain localization of inelastic materials. – Journal of Mechanics and Physics of Solids, vol.52, No.3, pp.725-753.
  • [21] Candija M. and Brnic J. (2004): Associative coupled thermoplasticity at finite strain with temperature-dependent material parameters. – International J. of Plasticity, vol.20, pp.1851-1874.
  • [22] Casey J. (1998): On elastic-thermo-plastic materials at finite deformations. – International Journal of Plasticity, vol.14, pp.173-191.
  • [23] Lehman Th. (1991): Thermodynamical foundations of large inelastic deformations of solids bodies including damage. – Inernational Journal of Plasticity, vol.7, pp.79-98.
  • [24] Nguyen Huu Viem (1999): Thermomechanical Couplings in Elasto-Plastic Metals in the Case of Finite Deformations [in Polish]. – Habilitation Thesis, IFTR-Reports, No.10/1999, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, pp.1-116.
  • [25] Śloderbach Z. and Pająk J. (2010): Generalized coupled thermoplasticity taking into account large strais: Part I. Conditions of uniqueness of the solution of boundary-value problem and bifurcation criteria. – Mathematics and Mechanics of Solids, vol.15, No.3, pp.308-327.
  • [26] Callen H.B. (1960): Thermodynamics. – N.Y.-London: Edition John Wiley and Sons.
  • [27] Dillon O.W. (1967): A thermodynamic basis of plasticity. – Acta Mechanica, vol.3, pp.182-195.
  • [28] Gumiński K. (1974): Thermodynamics. – Warsaw: PWN.
  • [29] Kestin J. (1973): A Meaning of Thermodynamic in Thermoplasticity. – Vol. „Thermoplasticity”, Ossolineum, Wrocław, pp.5-71.
  • [30] Petryk H. (1995): Thermodynamic stability of equilibrium in plasticity. – Journal of Non-Equilibrium Thermodynamics, vol.20, pp.132-149.
  • [31] Hueckel T. (1976): Coupling of elastic and plastic deformations of bulk solids. – Meccanica, vol.11, pp.227-235.
  • [32] Gyarmati J. (1970): Non-Equilibrium Thermodynamics, Field Theory and Variational Principles. – Berlin-N.Y: Springer.
  • [33] Pęcherski R. (1998): Description of Plastic Deformations of Metals with Microband of Shearing. – Habilitation Thesis [in Polish], IFTR-Report, No.2/1998, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, pp.1-132.
  • [34] Śloderbach Z. (2002): Some Problems of Mechanics in Pipeline Bending Processes [in Polish]. – Publishing House, Wrocław University of Technology, Wroclaw, pp.1-218.
  • [35] Killer K.J. (1991): An Introductory Lecture on Fatique of Metal. Course of Metal Fatique. – University of Sheffield, England.
  • [36] Coffin L.F. (1974): Fatique at High Temperature Prediction and Interpretation. – Institution of Mechanical Engineers, vol.188.
  • [37] Costa N. and Silva F.S. (2011): On a new temperature factor to predict the fatigue limit at different temperatures. – International Journal of Fatigue, vol.33, pp.624-631.
  • [38] Okrajni J., Junak G. and Marek A. (2008): Modelling of deformation process under thermo-mechanical fatique conditions. – International Journal of Fatique, vol.30, pp.324-329.
  • [39] Baumel A. and Seegler T. (1990): Material Data for Cyclic Loading. – Materials Science Monographs, vol.42A-E, Supplement 1, Elsevier Science Publishers.
  • [40] Marcisz E., Niesłony A. and Łagoda T. (2012): Concept of fatique for determining characteristics of materials with strengthening. – Materials Science Forum, vol.726, pp.43-48.
  • [41] Kaleta J. (1998): Experimental Foundations for Formulation of Fatique Hypotesis [in Polish]. – Institute of Materials Science and Technical Mechanics, Wrocław University of Technology, No.54, Monographie Series No.24, Wrocław, pp.1-144.
  • [42] Perzyna P. and Sawczuk A. (1973): Problems of Thermoplasticity. – Nuclear Engineering Design, vol.24, pp.1-55.
  • [43] Epstein M. and Maugin G.A. (2000): Thermomechanics of volumetric growth in uniform bodies. – International Journal of Plasticity, vol.16, No.7-8, pp.951-978.
  • [44] Markin A.A. and Sokolova M.Y. (2002): Thermomechanical models of irreversible finite deformation of anisotropic solids. – Strength of Materials, vol.34, No.6, pp.529-535.
  • [45] Xiao H., Bruhns O.T. and Meyers A. (2007): Thermodynamic laws and consistent Eulerian formulation of finite elastoplasticity with thermal effects. – Journal. of Mechanics and Physics of Solids, vol.55, No.2, pp.338-365.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e2e117f9-8b5a-497e-9c76-f5006a67a99b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.