PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Moisture transmission through textiles. Part I: Processes involved in moisture transmission and the factors at play

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Moisture transmission through textiles has a great influence on the thermo-physiological comfort of the human body which is maintained by perspiring both in vapour and liquid form. The clothing to be worn should allow this perspiration to be transferred to the atmosphere in order to maintaining the thermal balance of the body. Diffusion, absorption-desorption and convection of vapour perspiration along with wetting and wicking of liquid perspiration play a significant role in maintaining thermo-physiological comfort. The scientific understanding of the processes involved in moisture transmission through textiles and the factors affecting these processes are important to designing fabrics and clothing assemblies with efficient moisture transfer in different environment and workload conditions. This paper is in two parts.Part I focuses on the moisture transmission through textile materials and it discusses the processes involved in moisture transmission and the key influencing factors at play to maintaining comfort. It is underlined that the processes which play the major role in moisture transmission in a particular situation are dependant on the moisture content of the fabric, the type of material used, the perspiration rate and the atmospheric conditions, such as humidity, temperature and wind speed. Part II is concerned with the selection of the measurement techniques which are of great importance in determining fabric factors that influence comfort. The instruments and methods used for testing purposes should adequately simulate the exact conditions for which the fabric will be used, in order to determine the effectiveness of that fabric for a particular wearing situation and environmental condition. The testing methods used and the apparatus developed by different researchers for determining moisture transmission through textiles by different mechanisms are discussed in this paper. Moreover, this part of the paper deals with the mathematical models of liquid and vapour transport through textile materials developed by several scientists in order to understand the exact phenomena involved and to predict the factors affecting the transmission under a particular condition. When designing the comfort of a clothing product for a particular application, the requirements may result from needs concerning the application, the individual wearer and the environmental conditions.
Rocznik
Strony
100--110
Opis fizyczny
Bibliogr. 69 poz.
Twórcy
autor
  • Department of Textile Technology, Indian Institute of Technology, Delhi, India
autor
  • Department of Textile Technology, Indian Institute of Technology, Delhi, India
  • Department of Textile Technology, Indian Institute of Technology, Delhi, India
autor
  • Department of Textile Engineering, University of Minho, Guimarães, Portugal
autor
  • Department of Textile Engineering, University of Minho, Guimarães, Portugal
Bibliografia
  • 1. Li, Y., “The science of clothing comfort”, Textile progress, 1(2), 31(2001).
  • 2. Kothari, V. K., “Quality control: Fabric comfort”, Indian Ins. of Tech., Delhi, India, 2000.
  • 3. Saville, B. P., “Physical testing of textiles”, Woodhead Publishing Ltd., 1999.
  • 4. Olschewski, H. and Bruck, K., “Cardiovascular, and muscular factors related to exercise after Pre-cooling” J. Appl. Physiol., 64, 803-811(1988).
  • 5. Parsons, K. C., “Human thermal environments”, Taylor & Francis Publishers, United Kingdom, 1993.
  • 6. Zhang, P., Watanabe, Y., Kim, S. H., Tokura, H. and Gong, R. H., Thermoregulatory responses to different moisture-transfer rates of clothing materials during exercise, J. Text. Inst., 92 (1), 372-378 (2001).
  • 7. Chen, Y. S., Fan, J. and Zhang, W., Clothing thermal insulation during sweating, Text. Res. J., 73(2), 152-157 (2003).
  • 8. Sachdeva, R. C., “Fundamentals of engineering heat and mass transfer”, 2nd ed., India, 2005, Publisher New Age International (P) Ltd.
  • 9. Fohr, J. P., Dynamic heat and water transfer through layered fabrics, Text. Res. J., 72 (1), 1-12 (2002).
  • 10. Lomax, G. R., The design of waterproof, water vapour- permeable fabrics, J. of Coated Fabrics, 15(7), 40-49 (1985).
  • 11. Adler, M. M. and Walsh, W. K., Mechanism of transient moisture transport between fabrics, Text. Res. J., 5, 334-343 (1984).
  • 12. Ren, Y. J. and Ruckman, J. E., Water vapour transfer in wet waterproof breathable fabrics, J. Indus. Text., 32(3/1), 165-175 (2003).
  • 13. Morton, D. H. and Harley, J. W. S., “Physical properties of textile fibres”, New York, 1993.
  • 14. Nordon, P., Mackay, B. H., Downes, J. G. and McMahon, G. B., “Sorption kinetics of water vapour in wool fibres: Evaluation of diffusion coefficients and analysis of integral sorption”, Text. Res. J., 10, 761-770 (1960).
  • 15. Li, Y. and Holcombe, B. V., “A two-stage sorption model of the coupled diffusion of moisture and heat in wool fabrics”, 62(4), 211-217 (1992).
  • 16. Li, Y. and Luo, Z. X., “Physical mechanisms of moisture diffusion into hygroscopic fabrics during humidity transients”, J. of Text. Inst., 91 (2), 302-316 (2000).
  • 17. Nordon, P. and David, H. G., Int. J. Heat Mass Transfer, 10 (1967).
  • 18. Pause, B., “Measuring the water vapor permeability of coated fabrics and laminates”, J. of Coated Fabrics, 25(4), 311-320 (1996).
  • 19. Chatterjee, P. K., “Absorbency”, Elsevier Science Publishing Company, New Jersy, 1985.
  • 20. Nenws, A. C., Trans. Faraday Soc., 52, 1533 (1956).
  • 21. Li, Y., Holcombe, B. V., Scheider, A. M. and Apcar, F., “Mathematical modelling of the coolness to the touch of hygroscopic fabrics”, J. Tex. Inst., 84(2), 267-273 (1993).
  • 22. Woo, S. S., Shalev, I. and Barker, L., “Heat and moisture transfer through nonwoven fabrics, Part II: Moisture diffusivity”, Text. Res. J., 64 (4), 190-197 (1994).
  • 23. Li, Y., Zhu, Q. and Yeung, K. W., “Influence of thickness and porosity on coupled heat and liquid moisture transfer in porous textile”, Text. Res. J., 72 (5), 435-446 (2002).
  • 24. Yoon, H. N. & Buckley, A., “Improved comfort polyester, Part I: Transport properties and thermal comfort of polyester/cotton blend fabrics”, Textile Research Journal, 289-298 (1984).
  • 25. Yasuda, T., Miyama, M. and Yasuda, H., “Dynamic water vapour and heat transport through layered fabrics, Part I: Effect of surface modification”, Text. Res. J., 61(10), 10-20 (1991).
  • 26. Jost, W., “Diffusion in solid, liquids and gases”, Academic Press, New York, NY, USA, 423-425 (1960).
  • 27. Barnes, J. C. and Holcombe, B. V., “Moisture sorption and transport in clothing during wear”, Text. Res. J., 66(12), 777-786 (1996).
  • 28. Hong, K., Hollies, N. R. S. and Spivak, S. M., “Dynamic moisture vapour transfer through textiles”, Text. Res. J., (12), 697-706(1988).
  • 29. Kim, J. O., “Dynamic moisture vapour transfer through textiles, Part III: Effect of film characteristics on micro climate moisture and temperature”, Text. Res. J., 69 (3), 193-202 (1999).
  • 30. Suprun, N., “Dynamics of moisture vapour and liquid water transfer through composite textile structures”, Int. J. Clothing Sci. & Tech., 15(3/4), 218-223(2003).
  • 31. Wehner, J. A., Miller, B. and Rebenfeld, L., “Dynamics of water vapour transmission through fabric barriers”, Text. Res. J., 10, 581-592 (1988).
  • 32. Incropera, F. P., and DeWitt, D.P., “Fundamentals of heat of mass transfer”, 4th ed., John Wiley and Sons, New Work, 1996.
  • 33. Gibson, P., Kendrick, C., Rivin, D. and Sicuranza, L., “An automated water vapour diffusion test method for fabrics, laminates, and films”, J. of Coated Fabrics, 24(4), 322-345 (1995).
  • 34. Gibson, P. W. and Charmchi, M., “Modelling convection/diffusion processes in porous textiles with inclusion of humidity-dependent air permeability”, Int. Comm. Heat Mass Transfer, 24(5), 709-724(1997).
  • 35. Li, Y., Zhu, Q., “Simultaneous heat and moisture transfer with moisture sorption, condensation and capillary liquid diffusion in porous textiles”, Text. Res. J., 73(6), 515-524 (2003).
  • 36. Havenith, G., Holmer, I., Hartog, E. A. D. and Parsons, K. C., “Clothing evaporative heat resistance – proposal for improved representation in standards and models”, Ann. Occup. Hyg., 43(5), 339-346(1999).
  • 37. Schneider, A. M. and Hoschke, B. N., “Heat transfer through moist fabrics”, Text. Res. J., 62(2), 61-66 (1992).
  • 38. Ruckman, J. E., “Analysis of simultaneous heat and water vapour transfer through waterproof breathable fabrics”, J. of Coated Fabrics, 26, 293-307 (1997).
  • 39. Holmer, I., “Protection against cold”, Textiles in Sport, Edited by Shishoo, R., The Textile Institute, Woodhead Publishing Limited, Cambridge, England, 2005, 262-303.
  • 40. Murata, K., “Heat and mass transfer with condensation in a fibrous insulation slab bounded on one side by a cold surface”, Int. J. Heat Mass Transfer, 17(38), 3253-3262(1995).
  • 41. Ren, Y. J. and Ruckman, J. E., “Condensation in three-layer waterproof breathable fabrics for clothing”, International J. of Clothing Sc. and Tech., 16 (3), 335-347(2004).
  • 42. Fan, J., Luo, Z. & Li, Y., Heat and moisture transfer with sorption and condensation in porous clothing assemblies and numerical simulation, Int. J. Heat Mass Transfer, 43, 2989-3000 (2000).
  • 43. Ren, Y. J. and Ruckman, J. E., “Effect of condensation on water vapour transfer through waterproof breathable fabrics”, J. of Coated Fabrics, 1(29), 20-26 (1999).
  • 44. Kissa, E., “Wetting and wicking”, Text. Res. J., 66 (10), 660-668 (1996).
  • 45. Kamath, Y. K., Hornby, S. B., Weigman, H. D. and Wilde M. F., “Wicking of spin finishes and related liquids into continuous filament yarns”, Text. Res. J., 64(1), 33-40(1994).
  • 46. Gali, K., Jones, B. & Tracy, J., “Experimental techniques for measuring parameters describing wetting and wicking in fabrics”, Text. Res. J., 64 (2), 106-111 (1994).
  • 47. Wong, K. K., Tao, X. M., Yuen, C. W. M., Yeung, K. W., “Wicking properties of linen treated with low temperature server”, Text. Res. J., 71(1), 49-56 (2001).
  • 48. Harnett, P. R., and Mehta, P. N., “A survey and comparison of laboratory test methods for measuring wicking”, Text. Res. J., 54, 471-478 (1984).
  • 49. Mao, N. and Russell, S. J., “Directional permeability in homogeneous non-woven structures, Part I: The relationship between directional permeability and fibre orientation”, J. Text. Inst., 91(1), 235-258 (2000).
  • 50. Miller, B., “Critical evaluation of upward wicking tests”, International Nonwovens Journal, 9, 35-40 (2000).
  • 51. Rajagopalan, D. and Aneja, A. P., “Modelling capillary flow in complex geometries”, Text. Res. J., 71(9), 813-821(2001).
  • 52. Minor, F. M., and Schwartz, A. M., “Pathways of capillary migration of liquids in textile assemblies”, American Dyestuff Reporter, 49, 37-42 (1960).
  • 53. Perwuelz, A., Mondon, P. and Caze C., “Experimental study of capillary flow in yarn”, Text. Res. J., 70(4), 333-339 (2000).
  • 54. Ito, H. & Muraoka, Y., “Water transport along textile fibres as measured by an electrical capacitance technique”, Text. Res. J., 63(7), 414-420 (1993).
  • 55. Hollies, N. R. S., Kaessinger, M. M., Watson, B. S., and Bogaty, H., “Water transport mechanisms in textiles materials Part II: Capillary-type penetration in yarns and fabrics”, Text. Res. J., 8-13 (1957).
  • 56. Hollies, N. R. S., Kaessinger, M. M., and Bogaty, H., “Water transport mechanisms in textile materials Part I: The role of yarn roughness in capillary-type penetration”, Text. Res. J., 26, 829-835 (1956).
  • 57. Nyoni, A. B. and Brook, D., “Wicking mechanisms in yarns - the key to fabric wicking performance”, The Textile Institute,10.1S331, 19-128 (2006).
  • 58. Ming, W., Tung, K. L. and Hwang, K. J., “Fluid flow through basic weaves of monofilament filter cloth”, Text. Res. J., 66(5), 311-323 (1996).
  • 59. Adams, K. L., and Rebenfeld, L., “In-plane flow of fluids in fabrics: Structure/flow characterization”, Text. Res. J., 57, 647-654 (1987).
  • 60. Hsieh, Y. L., “Liquid transport in fabric structures”, Text. Res. J., 65(5), 299-307(1995).
  • 61. Scheurell, D.M., Spivak, S., and Hollies, N. R. S., “Dynamic surface wettness of fabric in relation to clothing comfort“, Text. Res. J., 6, 394-399 (1985).
  • 62. Tsubouchi, K., “Thickness of the air layer adhering to the perforated plastic plates and fabric“, Text. Res. J., 2, 86-90 (1988).
  • 63. Goldstein, B., Smith, H., and Herbert, W., “Lower limits of low weight pick up finishing“, Textile Chem. Color. 12, 49-54 (1980).
  • 64. Cassie, A. B. D., Atkins, B. E. and King, G., “Thermoplastic action of textile fibres“, Nature, 143, 162 (1939).
  • 65. Li, Y., “Fabric wetting factors“, Textile Asia, 6, 39-41(1999).
  • 66. Mizutani, C., Tsujii, Y., and Bertoniere, N., “Effect of fibre structure on heat of wetting of cotton and regenerated cellulosic fibres“, Text. Res. J., 69 (8), 559-564 (1999).
  • 67. Dent, R. W., “Transient comfort phenomena due to sweating“, Text. Res. J., 71(9), 796-806 (2001).
  • 68. Spencer-Smith, J. L., “The buffering effect of hygroscopic clothing“, Text. Res. J., 36, 855-856 (1966).
  • 69. Woodcock, A.M., “Moisture transfer in textile system“, Text. Res. J., 36, 855-856 (1966).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e2e1029b-57d7-4649-aecf-f45665e705dd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.