PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of Fe3Al intermetallic phase filler metal in valve seating face hard facing

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The exhaust valve seat face is a surface that degrades slowly as a result of mechanical and thermal stresses. There is extensive research on new materials for valves and for the improvement of valve production technology. This paper discusses the method of obtaining a filler metal made of Fe3Al intermetallic phase and the method of TIG hard-facing on a valve seating face made of H9S2 steel, evaluating the effects of essential hard-facing parameters. The resulting hard-facing build up was assessed in terms of quality using industrial radiography testing (RT).
Słowa kluczowe
Rocznik
Tom
Strony
257--265
Opis fizyczny
Bibliogr. 14 poz.
Twórcy
  • Faculty of Transport and Aviation Engineering, The Silesian University of Technology, Krasińskiego 8 Street, 40-019 Katowice, Poland
  • Faculty of Transport and Aviation Engineering, The Silesian University of Technology, Krasińskiego 8 Street, 40-019 Katowice, Poland
  • Medgal Sp. z o. o., Niewodnicka 26A Street, 16-001 Księżyno, Poland
Bibliografia
  • 1. Lewis R. 2000. “Wear of diesel engine inlet valves and seats”. Thesis submitted for the degree of Doctor of Philosophy. Department of Mechanical Engineering University of Sheffield.
  • 2. Zhao R., G.C. Barber, Y.S. Wang, J.E. Larson, 1997. “Wear mechanism analysis of engine”. Tribology Transactions 40(2). Taylor & Francis.
  • 3. Wang Y.S., J.M. Narasimhan, J.M. Larson, S.K. Schaefer, 1998. “Wear and wearmechanism simulation of heavy-duty engine intake valve and seat inserts”. Journal of Materials Engineering and Performance 7(1): 53-65.
  • 4. Forsberg P., P. Hollman, S. Jacobson. 2011. „Wear mechanism study of exhaust valve system in modern heavy duty combustion engines”. Wear 271: 2477-2484.
  • 5. Lewis R., R.S. Dwyer-Joyce. 2002. „Wear of Diesel Engine Inlet Valves and Seat Inserts”. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 216(205): 205-216.
  • 6. Wu A.P., J.L. Ren, Z.S. Pang, H. Murakawa, Y. Yudea, 2000. “Numerical simulation for the residual stresses of Stellite hard-facing on carbon steel”. Journal of Materials Processing Technology 101.
  • 7. Hasan S., R.E. Clegg, A. Mazid, 2016. “Stellites: properties, applications and machining perspective”. International Journal of Engineering Materials and Manufacture 1(2): 35-50.
  • 8. Seshagiri Rao B., Gopi Chandu, 2014. “Petrol engine exhaust valve design analysis and manufacturing process”. International Journal of Mechanical Engineering and Robotic Research 3(4): 395-401. ISSN: 2278-0149.
  • 9. Bojar Z., W. Przetakiewicz (Ed). 2006. Materiały metalowe z udziałem faz międzymetalicznych. [In Polish: Metallic materials with intermetallic phases]. Warsaw. BEL Studio. ISBN: 83-89968-03-7.
  • 10. Stoloff N.S. 1998. Materials Science and Engineering: A 258(1-2): 1-14.
  • 11. Baker I., D.J. Gaydosh. 1987. Metallography 20: 347.
  • 12. Spadło S., D. Krajcarz, P. Młynarczyk. 2014. “A comparison of laser cutting and water-jet cutting”. Journal of Achievements in Materials and Manufacturing Engineering (AMME) 66.
  • 13. Tarasiuk W., T. Szymczak, A. Borawski. 2020. “Investigation of surface after erosion using optical profilometry technique”. Metrology and Measurement Systems 27(2): 265-273. DOI: 10.24425/mms.2020.132773.
  • 14. Tarasiuk W., K. Golak, Y. Tsybrii, O. Nosko, 2020. „Correlations between the wear of car brake friction materials and airborne wear particle emissions”. Wear 456-457: 203361.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e2e0a250-df95-4ad8-908e-fcd73202a6fd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.