PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

A Method for Assessing a Causation Factor for a Geometrical MDTC Model for Ship-Ship Collision Probability Estimation

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper a comparative method for assessing a causation factor for a geometrical model for ship-ship collision probability estimation is introduced. The results obtained from the model are compared with the results of an analysis of near-collisions based on recorded AIS data and then with the historical data on maritime accidents in the Gulf of Finland. The causation factor is obtained for three different meeting types, for a chosen location and prevailing traffic conditions there.
Twórcy
autor
  • Maritime University of Szczecin, Poland
autor
  • Maritime University of Szczecin, Poland
autor
  • Maritime University of Szczecin, Poland
autor
  • Maritime University of Szczecin, Poland
Bibliografia
  • [1] Aarsther, Karl, G. and T. Moan (2009). Estimating navigation patterns from AIS. The Journal of Navigation 62(04), 587–607.
  • [2] Button, K. and J. Drexler (2006). Are measures of air-misses a useful guide to air transport safety policy? Journal of Air Transport Management 12(4), 168–174.
  • [3] DNV (2003). Formal safety assessment - large passanger ships, annex ii: Risk assesment - large passenger ships - navigation. Technical report.
  • [4] Endoh, S. (1982). Aircraft collision models. Master Thesis. Massachusetts Institute of Technology. MSc thesis, Massachusetts Institute of Technology.
  • [5] Fujii, Y. and R. Siobara (1971). The analysis of traffic acci-dents. The Journal of Navigation 24(4), 534–543.
  • [6] Fujii, Y. and K. Tanaka (1971). Traffic capacity. The Journal of Navigation 24, 543–552.
  • [7] Gluver, H. and D. Olsen (1998). Ship collision analysis. Taylor & Francis.
  • [8] Goerlandt, F. and P. Kujala (2011). Traffic simulation based ship collision probability modeling. Reliability Engineering & System Safety 96(1), 91–107.
  • [9] Goodwin, E. M. (1975). A statistical study of ship domains. The Journal of Navigation 28(03), 328–344.
  • [10] Gucma, L. and K. Marcjan (2010). The incident based system of navigational safety management of coastal areas. In P. Gelder, L. Gucma, and D. Proske (Eds.), 8th International Probabilistic Workshop. Maritime University, Szczecin.
  • [11] Hanninen, M. and P. Kujala (2009). The effects of causation probability on the ship collision statistics in the gulf of fin-land. In A. Wentrit (Ed.), Marine Navigation and Safety of Sea Transportation, London, pp. 267–272. Taylor and Fran-cis.
  • [12] Heinrich, H., D. Petersen, and N. Roos (1980). Industrial accident prevention (5th ed.). New York: McGraw-Hill.
  • [13] Inoue, K. and M. Kawase (2007). Innovative probabilistic pre-diction of accident occurrence. In A. Weintrit (Ed.), Marine navigation and safety of sea transportation, London, pp. 31–34. Taylor & Francis.
  • [14] Inoue, K., H. Seta, M. Kawase, Y. Masaru, H. Daichi, U. Hideo, H. Kohei, and M. Kenji (2004). Assessment model of ship handling safety by noting unsafe situation as an index. Journal of the Kansai Society of Naval Architects (241), 205–210.
  • [15] Jingsong, Z., W. Zhaolin, and W. Fengchen (1993). Comments on ship domains. The Journal of Navigation 46(03), 422–436.
  • [16] Kao, S.-L., K.-T. Lee, K.-Y. Chang, and M.-D. Ko (2007). A fuzzy logic method for collision avoidance in vessel traffic service. The Journal of Navigation 60(01), 17–31.
  • [17] Kristiansen, S. (2004). Maritime Transportation: Safety Management and Risk Analysis. Butterworth-Heinemann.
  • [18] MacDuff, T. (1974). The probability of vessels collisions. Ocean Industry, 144–148.
  • [19] Martins, M. and M. Maturana (2010). Human error contribution in collision and grounding of oil tankers. Risk Analysis 30(4), 674–698.
  • [20] Montewka, J., F. Goerlandt, and P. Kujala (2011). A new definition of a collision zone for a geometrical model for ship-ship collision probability estimation. In A. Weintrit (Ed.), 9th INTERNATIONAL NAVIGATIONAL SYMPOSIUM ON MARINE NAVIGATION AND SAFETY OF SEA TRANSPORTATION, Gdynia. Gdynia Maritime Univeristy.
  • [21] Montewka, J., T. Hinz, P. Kujala, and J. Matusiak (2010). Probability modelling of vessel collisions. Reliability Engineering & System Safety 95, 573–589.
  • [22] Organization, I. M. (2002). COLREG: Convention On The International Regulations For Preventing Collisions At Sea (1st ed.). London: Sterling Book House.
  • [23] Pedersen, P. T. (1995). Collision and grounding mechanics. Copenhagen, pp. 125–157. The Danish Society of Naval Architects and Marine Engineers.
  • [24] Pettersson, H., T. Hammarklint, and D. Schrader (2010, October). Wave climate in the baltic sea 2008. HELCOM Indi-cator Fact Sheets 2009. Online.
  • [25] Pietrzykowski, Z. (2008). Ship’s fuzzy domain - a criterion for navigational safety in narrow fairways. The Journal of Nav-igation 51, 499–514.
  • [26] Vincenty, T. (1975). Direct and inverse solutions of geodesics on the ellipsoid with application of nested equations. Sur-vey Review 176, 88–93.
  • [27] Wang, N. (2010). An intelligent spatial collision risk based on the quaternion ship domain. The Journal of Navigation 63(04), 733–749.
  • [28] Wang, N., X. Meng, Q. Xu, and W. Zuwen (2009, October). A unified analytical framework for ship domains. The Journal of Navigation 62(4), 643–655.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e2df97e2-0921-4e20-95e5-b5c3b0ee3ed3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.