PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analytical and numerical analysis of damped harmonic oscillator model with nonlocal operators

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nonlocal operators with different kernels were used here to obtain more general harmonic oscillator models. Power law, exponential decay, and the generalized Mittag-Leffler kernels with Delta-Dirac property have been utilized in this process. The aim of this study was to introduce into the damped harmonic oscillator model nonlocalities associated with these mentioned kernels and see the effect of each one of them when computing the Bode diagram obtained from the Laplace and the Sumudu transform. For each case, we applied both the Laplace and the Sumudu transform to obtain a solution in a complex space. For each case, we obtained the Bode diagram and the phase diagram for different values of fractional orders. We presented a detailed analysis of uniqueness and an exact solution and used numerical approximation to obtain a numerical solution.
Wydawca
Rocznik
Strony
art. no. 20220230
Opis fizyczny
Bibliogr. 18 poz., wykr.
Twórcy
  • Department of Mathematics and Statistics, Imam Mohammad Ibn Saud Islamic University College of Science, P.O. Box 90950, 11623, Riyadh, Saudi Arabia
  • Institute for Groundwater Studies, Faculty of Natural and Agricultural Science, University of the Free State, 9300 Bloemfontein, South Africa
  • Department of Mathematics, College of Science, King Saud University, P.O. Box 1142, Riyadh 11989, Saudi Arabia
Bibliografia
  • [1] W. B. Case, The pumping of a swing from the standing position, Am. J. Phys. 64 (1996), no. 3, 215–220.
  • [2] P. Roura and J. A. Gonzalez, Towards a more realistic description of swing pumping due to the exchange of angular momentum, Eur. J. Phys. 31 (2010), no. 5, 1195–1207.
  • [3] G. R. Fowles and G. L. Cassiday, Analytic Mechanics (5th edn.), Saunders College Publishing, Fort Worth, 1986.
  • [4] S. I. Hayek, Mechanical vibration and damping, Encycl. Appl. Phys. WILEY-VCH Verlag GmbH & Co KgaA, (15 Apr 2003). DOI: 10.1002/3527600434.eap231.
  • [5] P. Tipler, Physics for Scientists and Engineers: Vol. 1 (4th edn.). W. H. Freeman, 1998.
  • [6] J. Liouville, Mémoire sur le calcul des différentielles à indices quelconques, J. de. l'École Polytechnique, Paris. 13 (1832), 71–162.
  • [7] J. Liouville, Mémoire sur quelques questions de géométrie et de mécanique, et sur un nouveau genre de calcul pour résoudre ces questions, J. de. l'École Polytechnique, Paris. 13 (1832), 1–69.
  • [8] M. Caputo, Linear model of dissipation whose Q is almost frequency independent. II, Geophys. J. Int. 13 (1967), no. 5, 529–539.
  • [9] M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl. 1 (2015), no. 2, 73–85.
  • [10] A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Therm. Sci. 20 (2016), no. 2, 763–769.
  • [11] D. Benson, S. Wheatcraft, and M. Meerschaert. Application of a fractional advection-dispersion equation, Water Resour. Res. 36 (2000), no. 6, 1403–1412.
  • [12] Herrmann R, ed. Fractional calculus. Fractional Calculus: An Introduction for Physicists (2nd edn). New Jersey: World Scientific Publishing Co, 54, 2014.
  • [13] R. K. R. Yarlagadda, Analog and Digital Signals and Systems. Springer Science & Business Media, 243, 2010.
  • [14] M. Van Valkenburg, University of Illinois at Urbana-Champaign, In memoriam: Hendrik W. Bode (1905-1982), IEEE Trans. Autom. Control., AC-29, 3, March 1984, 193–194.
  • [15] T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits. (2nd edn). Cambridge UK: Cambridge University Press, p. §14.6 pp. 451–453, 2004.
  • [16] W. S. Levine, The control handbook: the electrical engineering handbook series. (2nd edn). Boca Raton FL: CRC Press/IEEE Press. p. §10.1 p. 163, 1996.
  • [17] S. Bhatter, K. Jangid, and S. D. Purohit, Fractionalized mathematical models for drug diffusion, Chaos, Solitons Fractals. 165 (2022), 112810.
  • [18] M. A. Khan, S. Ullah, and S. Kumar, A robust study on 2019-nCOV outbreaks through non-singular derivative. Eur. Phys. J. Plus. 136, 168.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e2de4d8b-564b-40fe-9e58-01d731075904
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.