PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Efficient numerical modeling of functionally graded shell mechanical behavior

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Numerical analysis of the static bending and free vibration mechanical behavior of FGM are performed using the UMAT-USDFLD subroutines in ABAQUS software. Different combinations of geometries, mechanical loading and boundary conditions are adopted. The material properties according to the coordinates of the integration points are defined in the developed numerical model. The First Order Deformation Theory is used for thin and moderately thick FG shells analysis. The accuracy and the robustness of the numerical model are illustrated through the solution of several non trivial structure problems. The proposed numerical procedure is significantly efficient from the computational point of view.
Słowa kluczowe
Rocznik
Strony
84--94
Opis fizyczny
Bibliogr. 22 poz., fig., tab.
Twórcy
autor
  • University of Sfax, National Engineering School of Sfax, Electro-Mechanical System's Laboratory, B.P 1173-3038 Street Soukra Km 3.5, Sfax, Tunisia
autor
  • University of Sfax, National Engineering School of Sfax, Electro-Mechanical System's Laboratory, B.P 1173-3038 Street Soukra Km 3.5, Sfax, Tunisia
  • University of Sfax, National Engineering School of Sfax, Electro-Mechanical System's Laboratory, B.P 1173-3038 Street Soukra Km 3.5, Sfax, Tunisia
Bibliografia
  • [1] Abrate, S. A. (2006). Free vibration, buckling, and static deflections of functionally graded plates. Journal of Composites Science and Technology, 66, 2383–2394. doi:10.1016/j.compscitech.2006.02.032
  • [2] Alipour, M. M., & Shariyat, M. (2012). An elasticity-equilibrium-based zigzag theory for axisymmetric bending and stress analysis of the functionally graded circular sandwich plates, using a maclaurin-type series solution. Eur J Mech A/Solids, 34, 78–101. doi:10.1016/j.euromechsol.2011.12.004
  • [3] Apetre, N. A., Sanka, B. V., & Ambur, D. R. (2006). Low-velocity impact response of sandwich beams with functionally graded core. International Journal of Solids and Structures, 43, 2479–2496. doi:10.1016/j.ijsolstr.2005.06.003
  • [4] Chung, Y. L. & Chen, W. T. (2007). The flexibility of functionally graded material plates subjected to uniform load. Journal of Mechanics of Materials and Structures, 2, 63–86. doi:10.2140/jomms.2007.2.63
  • [5] Draiche, K., Derras, M., Kaci, A. & Tounsi, A. (2013). Non-linear analysis of functionally graded plates of cylindrical bending based on a new refined shear deformation theory. Journal of theoretical and applied mechanics, 51, 339– 348.
  • [6] Frikha, A. & Dammak, F. (2017). Geometrically non-linear static analysis of functionally graded material shells with a discrete double directors shell element. Computer Methods in Applied Mechanics and Engineering, 315, 1– 24. doi:10.1016/j.cma.2016.10.017
  • [7] Frikha, A., Wali, M., Hajlaoui, A & Dammak, F. (2016a). Dynamic response of functionally graded material shells with a discrete double directors shell element. Composite Structures, 154, 385–395. doi:10.1016/j.compstruct.2016.07.021
  • [8] Frikha, A., Wali, M., Hajlaoui, A & Dammak, F. (2016b). A new higher order c0 mixed beam element for fgm beams analysis. Composites part B, 106, 181– 189. doi:10.1016/j.compositesb.2016.09.024
  • [9] GhannadPour, S. A. M. & Alinia, M. M. (2006). Large deflection behavior of functionally graded plates under pressure loads. Journal of composite structures, 75, 67–71. doi:10.1016/j.compstruct.2006.04.004
  • [10] Ghanned, M. & Nejad, M. Z. (2013). Elastic solution of pressurized clamped-clamped thick cylindrical shelles made of functionally graded materials. Journal of theoretical and applied mechanics, 51, 1067–1079.
  • [11] Lin, F. & Xiang, Y. (2014). Vibration of carbon nanotube reinforced composite beams based on the first and third order beam theories. Applied Mathematical Modelling, 38, 3741–3754. doi:10.1016/j.apm.2014.02.008
  • [12] Mao, Y., Fu, Y., & Fang, D. (2013). Interfacial damage analysis of shallow spherical shell with fgm coating under low velocity impact. International Journal of Mechanical Sciences, 71, 30–40. doi:10.1016/j.ijmecsci.2013.03.004
  • [13] Nie, G. & Zhong, Z. (2007). Axisymmetric bending of two-directional functionally graded circular and annular plates. Acta Mechanica Solida Sinica, 20, 289– 295. doi:10.1007/s10338-007-0734-9
  • [14] Praveen, G. N. & Reddy, J. N. (1997). Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates. International Journal of Solids and Structures, 35, 4457–4476. doi:10.1016/S0020-7683(97)00253-9
  • [15] Shariyat, M. & Alipour, M. M. (2014). A novel shear correction factor for stress and modal analyses of annular fgm plates with non-uniform inclined tractions and nonuniform elastic foundations. International Journal of Mechanical Sciences, 87, 60–71.
  • [16] Simo, J. C., Fox, D. D. & Rifai, M. S. (1989). On a stress resultant geometrically exact shell model. part II: The linear theory; Computational aspects. Computer Methods in Applied Mechanics and Engineering, 73, 53–92. doi:10.1016/0045-7825(89)90098-4
  • [17] Thai, H. T., & Kim, S. E. (2015). A review of theories for the modeling and analysis of functionally graded plates and shells. Composite Structures, 128, 70–86. doi:10.1016/j.compstruct.2015.03.010
  • [18] Tornabene, F. (2009). Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures with a four-parameter power-law distribution. Comput. Methods Appl. Mech. Engrg, 198, 2911–2935. doi:10.1016/j.cma.2009.04.011
  • [19] Wali, M., Hajlaoui, A. & Dammak, F. (2014). Discrete double directors shell element for the functionally graded material shell structures analysis. Computer Methods in Applied Mechanics and Engineering, 278, 388–403. doi:10.1016/j.cma.2014.05.011
  • [20] Wali, M., Hentati, T., Jarraya, A., & Dammak, F. (2015). Free vibration analysis of fgm shell structures with a discrete double directors shell element. Composite Structures, 125, 295–303. doi:10.1016/j.compstruct.2015.02.032
  • [21] Yanga. J., & Shen, H. S. (2003). Non-linear analysis of functionally graded plates under transverse and in-plane loads. International Journal of Non- Linear Mechanics, 38(4), 467–482. doi:10.1016/S0020-7462(01)00070-1
  • [22] Zenkour, A. M. (2006). Generalized shear deformation theory for bending analysis of functionally graded plates. Applied Mathematical Modelling, 30 (1), 67–84. doi:10.1016/j.apm.2005.03.009
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e2dd8ebe-ff75-4bbf-b023-dc33784be9a7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.