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Map of Attributes (MoA) is a visualization technique that allows to construct graphical representation of 
abstract entities. The technique is intended to aid recognition of the entities’ representations through  
the effective use of human perception abilities. A certain difficulty in the application of MoA is  
the computational complexity of finding an optimal map. The study presents a heuristic approach, based on 
evolutionary algorithms (EA), to constructing MoA visualization. The method was evaluated using  
the repository of disease entities as an input dataset. Several different setups of EA were tested; these were 
configurations with well-known evolution operators, as well as setups with newly proposed operators for  
the matrix representation of chromosome. Detailed results and analysis of conducted experiments  
are presented. 
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1. Introduction 
 
The study presents a heuristic approach to 
solving the problem of finding the optimal Map 
of Attributes visualization for a given dataset 
[22], [23]. The technique was applied to  
the visualization of medical patterns [1], [2]: 
disease entities as well as the patient’s health 
condition. For the purpose of the study an 
example repository of diseases was prepared. 
The source of the repository content was Mayo 
Clinic [6] (where among other information, each 
disease is described by the most common 
symptoms). The final repository is a subset of 
diseases for three medical specialties: pulmonary 
medicine, cardiology and gastroenterology.  
It contains 78 diseases which are defined by 143 
symptoms; naturally, a single symptom can 
occur in multiple diseases. MoA operates by 
constructing a two-dimensional map of points, 
where each point reflects a unique symptom 
form the visualized repository. Then, each 
disease entity can be presented graphically by 
polygon, whose vertices are symptoms 
belonging to the disease, see examples in Fig. 1. 
A graphical representation of a patient’s health 
condition can be similarly constructed, in  
the form of a polygon, out of symptoms 
diagnosed in the patient. The Map of Attributes 
technique is designed to facilitate the use of 
natural human perception abilities in disease 
recognition process by: 

 
1. Application of a two-dimensional space for 

symptoms representation as points on  
the map – according to Mackinlay’s 
ranking, defining a position in space is  
the most effective perception task [19].  

2. Using polygons for building graphical 
representations of medical patterns – figures 
allows the application of shape perception 
in pattern recognition. Shape is a graphical 
characteristic of an image that carries  
the biggest amount of information [21].  

3. Utilizing the effect of the polygon’s 
position on a map – the position is an 
additional attribute that simplifies 
memorizing and disease entities 
recognition. Analogically to point 1, but on 
the level of diseases. 

4. Adopting figures’ shape perception 
optimization by maximizing polygons’ 
figural goodness, which is a number of its 
regularities, such as symmetry and 
repetition [13], [21]. According to Gestalt 
psychology, humans process good figures 
better, which has a positive influence on 
shape perception and improves 
effectiveness of matching and pattern 
recognition [8], [9], [16]. 

To achieve the #4 objectives, it is required to 
find an arrangement of symptoms on a map in 
such a way that all visualized diseases form 
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good figures. In order to solve the task, three 
computationally complex issues must be 
addressed [22]: 
1. Polygon constructing – with 𝑂(𝑛!) 

computational complexity, it involves 
finding a polygon from a given set of  n 
points (vertices) on a map. 

2. Figural goodness evaluation – with 
𝑂�2𝑛𝑙𝑜𝑔𝑛� computational complexity, it 
involves finding information load of  
a polygon with n vertices, which is 
preferable perceptual interpretation of the 
polygon [12]. 

3. Map optimization – with 𝑂(𝑛!) 
computational complexity, it involves 
finding optimal arrangement of map with n 
symptoms, it is such that has maximal 
aggregated figural goodness of all diseases 
(polygons) represented on the map. 
 

 
 

Fig. 1. Example of a disease visualization using MoA 
 

The first two problems, despite their complexity, 
can be solved in finite time, due to limited size  
of data (the number of symptoms per disease is 
generally less than a few dozen [15], [18]) and 
efficient algorithms [23]. The biggest challenge 
is the 𝑂(𝑛!) complexity of Map optimization 
problem, where the number of input data 
(different symptoms and diseases) can be very 
high [14], [24]. Even in the example repository, 
there are 143 symptoms and 78 diseases.  

Simple searching through the space of 
possible maps is not acceptable. Therefore,  
the study was focused on finding a more 
efficient method. Since, potentially good 
candidates for such an optimization problem are 
heuristic approaches, the application of 
Evolutionary Algorithms (EA) was selected [7].  
Naturally, the heuristic approach is not  
a guarantee of finding an optimal solution, but 
anything close to an optimal solution can be 

good enough from the visualization perspective. 
The effectiveness of the mentioned strategy was 
the subject of experimental verification and 
detailed results are presented in next sections.  
 
2. Evolutionary algorithms overview 
 
Evolutionary Algorithms (EA) are a family of 
optimization methods based on stochastic search 
through the space of possible solutions [3].  
EA mimics the main steps of the evolutionary 
process: selection of individuals for 
reproduction, their recombination and mutation 
of their genotype.  Key concepts of EA are:  
• individuals (candidates) – represent  

a possible solution to the problem, 
• objective function – evaluates individuals,  
• individuals selection technique (strategy) 

– decides which candidates survive, 
• evolution operators – are techniques of 

reproduction and mutation that produce 
offspring of the candidates.  

EA operation rules are as follows: 
1. Generating an initial population (where  

the number of individuals is one of the 
important parameters); 

2. Evaluating fitness of each of the individuals 
using an objective/fitness function; 

3. Selecting the best individuals as parents for 
the next generation  

4. Creating a next generation using the 
evolution operator (reproduction and 
mutation techniques); 

5. Proceeding the next generation to step 2.  
The algorithm ends when termination conditions 
are satisfied, typically these are: number of 
generations, stagnation or achieved required 
fitness level.  

A crucial aspect of EA is fitness function 
used to evaluate individuals. It can be defined 
quite freely, the only constraint is that it should 
reflect how close an individual is to the desired 
outcome. In the case of searching for optimal 
map arrangement, the objective function can be 
defined using information load – 𝐼𝐿(𝑓) of  
a figure 𝑓 as a bases. A proposed metric is an 
aggregated information load: 
 

𝑎𝑔𝑔𝐼𝐿𝑚(𝑂) = ∑ 𝐼𝐿(𝑝𝑚(𝑥))𝑥∈𝑂  (1) 
 
where: 
• 𝑥 – a disease 
• 𝑂 − repository of diseases  
• 𝑝𝑚(𝑥) − graphical representation of disease 

𝑥 on a given map m.  
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The lower aggIL is, the “better” map was found 
and more objects are represented as good 
figures.  
 
3. Map optimization EA 

representation and operators 
 
Several different configurations of the 
evolutionary algorithm for MoA optimization  
was evaluated. Major building blocks and at the 
same time parametrization areas of the algorithm 
are presented below. Description is limited only 
to those that are important in explaining issues 
that were encountered. The discussion is started 
with “standard” well-known solutions and 
followed by specialized methods prepared for 
specific characteristics of the map optimization 
problem. 
 
3.1.  Chromosome encoding 
 
The initial prerequisite is the definition of 
individuals genotype encoding. Like in 
biological evolution, the encoding is called  
a chromosome [3]. A chromosome defines  
a single solution or set of parameters of  
a solution. There are no restrictions on  
the chromosome encoding method and any data 
structure can be applied. Typically it is a list of 
some sort of elements like: string of 0 and 1 or  
a list of cities’ names (for example in the case of 
the Travelling Salesman Problem) – called later 
list representation. 
 

 
Fig. 2. Chromosome encoding examples:  

a) matrix representation;  
b) ordered list representation 

 
In our case, a single solution is a square map of 
n equal cells, where each cell represents a single 
attribute from the visualized data set. Natural 
encoding of the chromosome is a matrix of n x n 
size, where the matrix’s elements correspond to 
the attributes – later called matrix representation. 
However, to be able to apply standard EA 
operators, the ordered list of elements 
representation can also be adopted. The list 
would reflect the order of attributes in the map 
reading from left-to-right and top-to-bottom (see 

Fig. 2). The efficiency of both types of  
the chromosomes was exanimated in further 
experiments. 

 
3.2.  Selection strategy 

 
Selection strategy operates between each 
iteration of the evolutionary algorithm [3]. It 
defines a method of selecting candidates to 
become parents for the next population. 
Selection strategies are very important, since 
they decide how successive generations are 
growing and direct them into a promising area of 
a search space. There are many ready-to-use 
selection strategies, derived from Genetic 
Algorithms and Evolution Strategies, to name 
only a few: Truncation Selection, Roulette 
Wheel Selection, Rank Selection, Tournament 
Selection, (μ + λ) – ES and (μ, λ) – ES. Only  
the last one is described here, because it proved 
during experiments to be the most suitable for 
the map optimization problem. 

The (μ, λ) – ES is also called comma 
selection [4], μ represents size of a population 
and λ ≥1 is a number of descendants that is 
generated in each iteration. In the selection 
process the parent population is not included and 
only the fittest offspring are in the pool and can 
be selected to the next population – to simplify, 
parents are forgotten. 

 
3.3.  “Standard” evolution operators 

 
Evolution operators enable genetic diversity in  
a population. Applying the operators prevents 
getting individuals who are too similar to each 
other and helps to avoid local minimums [3].  
The operators are applied to selected parent 
candidates (one or more) and result in one or 
more offspring. There are two types of 
operators: crossover and mutation. However, 
many different realizations of them are possible. 
A useful overview of the most popular ones can 
be found in [17] and [20].  Some of the well- 
-known operators were used in our empirical 
tests and these are introduced in more detail 
below. 
 
3.3.1. Crossover operators 

 
The first type of operators is crossover [20]. 
Crossover operators require usually at least two 
parents (usually, because there are also crossover 
techniques for more than two parents). Since 
crossover involves exchanging of genotype 
between parents and creating one or more 
offspring. Crossover is typically based on 
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swapping of genotype segments or individual 
genes. For the purpose of this study, two of such 
techniques: Partially Matched Crossover (PMX) 
and Position Based Crossover (POS) were used 
[5], [10]. 
 
Partially Matched Crossover – PMX 
 
PMX consists of selecting a segment of 
chromosomes that should be preserved from 
parents (two parents in case of PMX), based on 
the segments a mapping of genes is also defined.  
Next, two offspring are created, each of  
the offspring preserves a selected segment from 
one of the parents and the missed genes are 
taken from the same positions from the second 
parent. If any of the genes is repeated then the 
mapping defined at the beginning is applied. Fig. 
3 presents an example of PMX application to  
a chromosome from Fig. 2 and another parent 
(with 0 to 15 ordered elements). 
 

 
 

Fig. 3. An example of Partially Matched Crossover 
operator 

 
Position Based Crossover – POS 

In POS, firstly, genes that will be preserved from 
the first parent are randomly chosen and 
transferred to an offspring. Subsequently,  
the missing genes are copied from the second 
parent in unchanged order, if some of the genes 
are already present then it is skipped and 
copying moves to a next one. An example of 
applying POS operator can be found in Fig. 4. 
 

 
 

Fig. 4. An example of Position Based Crossover 
operator 

 
3.3.2. Mutation operators 
 
Mutation operators apply to a single individual, 
therefore, they are usually simpler. The idea is 
simply to alter a single or multiple genes in  
a chromosome. To generalize, for each gene of  
a chromosome a decision is made whether to 
change it or leave it unchanged. Alteration is 
done with a defined probability, if the 
probability is too high, evolution can be reduced 
to a random search. The mutation operator used 
in the experiments is Repeated Exchange 
Mutation Operator (REM) [4]. 
 
Repeated Exchange Mutation – REM 
 
REM re-orders a random element of a parent 
genotype with an element occurring x positions 
before or after it (where x < number of 
elements). An example of REM operation is 
presented in Fig. 5. The operator has two 
parameters:  
• mutation count – defines how many times 

the mutation is applied, it can be a fixed 
number or determined according to  
a defined probability schema; 

• mutation amount – defines the number of 
positions by which the element is shifted, it 
can be also fixed or randomized. 
 

 
 

Fig. 5. An example of Repeated Exchange Mutation 
 
3.3.3. Operators characteristics 
 
Let’s consider now some characteristics of  
the above operators. PMX preserves the selected 
segment and absolute positions of elements from 
the second parent. Therefore, it may be 
especially suitable for problems where final 
solution can be built of such optimized subparts 
and absolute positions of genes are important. 
On the other hand, POS partially preserves 
absolute positions of genes (genes of the first 
parent) and partially emphasizes the genes order 
(genes of the second parent). 

The map optimization problem has its 
specific characteristic. Although a solution can 
be represented as an ordered list of 
chromosomes, the position of a single gene 
influences not only its neighbors, but many other 
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related genes. This is because of co-occurrence 
of many attributes in a single object and between 
objects. Furthermore, because of the 2D nature 
of the map optimization problem, the position of 
the gene in 2D space is an important aspect, not 
the position on the 1D list. Therefore, intuitively 
a better approach should be one that preserves 
positions of genes, which indicates PMX. 
Analyzing POS, its drawback is focusing on 
order of elements when copying from the second 
parent, which is not important from our 
perspective. However this operator has also  
a potential advantage, POS preserves absolute 
positions of selected elements of the first parent.  
Regarding REM operator, its typical 
implementation is dependent on the list 
representation, because elements are selected to 
be swapped using a random distance in a given 
sequence of elements. Therefore, its 
effectiveness may be weaker in 2D space 
problems, which is our case. 
 
3.4.  Specialized evolution operators 
 
“Standard” operators were built with list 
representation of chromosomes in mind. 
Additionally, some of them are focused more on 
the ordering of genes than their absolute or 
relative positions. Therefore, an attempt was 
made to prepare specialized operators, which can 
cope with specific issues of 2D problems and  
the related 2D matrix  representation of 
chromosome, like in the map optimization 
problem. All operators presented in this section 
are original propositions constructed during 
research on the map optimization problem.  
 
Position Based Mapped Crossover – PBMX 

POS operator has its advantage in preserving  
the absolute positions of genes from the first 
parent, at the same time genes of the second 
parent are copied keeping their order but not 
positions. While the position preservation of  
the second parent genes is a feature of PMX 
operator. The Position Based Mapped Crossover 
(PBMX) operator is a mixture of POS and PMX 
approaches. It can be applied to both: list and 
matrix chromosome representations. 
 
 
 

 
 

Fig. 6. An example of Position Based Mapped 
Crossover operator 

 
In the first phase PBMX works like POS: a set 
of genes that will be transferred to offspring is 
randomly selected for both parents. In the next 
step, similarly as in PMX, a mapping between 
the selected genes of the parents is produced. 
Then, the algorithm continues with PMX 
approach, which means that two offspring are 
created, each of the offspring receives  
the selected genes from one of the parents and 
missed genes are taken from the same positions 
from the second parent. In the case when some 
of the genes are repeated, defined mapping is 
applied to fix this issue, see Fig. 6 for an 
example.  

 
Region Mapping Crossover – RMX 

A possible disadvantage of PMX operator is that 
it was built on segments of genes, which are 
subsequences of a 1D list. This may not be 
sufficient in the case of its application to 2D 
related problems. On the other hand, as it was 
noticed before, the preservation of gene 
positions while copying from the second parent 
is a very welcomed behavior. To overcome  
the 1D sequences issue, a specialized crossover 
operator was proposed – Region Mapping 
Crossover (RMX). The operator is region based, 
so instead of selecting a sequence of genes, a 
region in the matrix representation of 
chromosome is selected, where the region is 
understood as a submatrix. Further behavior of 
RMX is similar to PMX. Elements included in 
the region from the first parent are mapped to 
elements at the same positions from the second 
parent. Next, the selected region of the first 
parent is copied to the first offspring, and the 
missed genes are taken from the second parent 
left-to-right and top-to-bottom. Their original 
positions are kept, but if some of the genes are 
already present in the offspring, the mapping 
prepared earlier is applied and its replacement is 
used. The same procedure is applied to the 
second pair of parent and offspring, see Fig. 7 
for an example. 
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An important comment is that the method 
of selecting the region is not explicitly defined; 
therefore, different strategies are possible. 
Assuming that common first step is determining 
randomly the size of the submatrix, further 
possible strategies are: 
• wrapping strategy – randomly selecting  

a cell of the matrix, which will be the top-
left corner of the region. If the region size 
does not fit on the matrix, the region is 
wrapped to the opposite side of the matrix. 

• non-wrapping strategy – as in the 
wrapping strategy, with the difference that 
if the region size does not fit on the matrix, 
the surplus portion of the region is not taken 
into account. 

• fitting strategy – randomly selecting a cell 
of the matrix which will be the top-left 
corner of the region, but available cells are 
limited to those that guarantee the whole 
region fits on the matrix;  

It should be noticed that only the wrapping 
strategy is fair and selects each of the cells with 
the same probability. All the other strategies 
prefer some cells, at the same time this does not 
mean that they cannot give good results for 
certain types of problems. 
 

 
 

Fig. 7. An example of Region Mapping Crossover 
operator 

 
Figure Preservation Heuristic Crossover – 

FPHX 

In analyzing the already discussed crossovers, 
these are general operators, in the sense that they 
can be used for any kind of a problem as long as 
it is represented as list or matrix chromosome. 
Their behavior differs and they emphasize 
diverse aspects, like ordering of genes, position 
or segment/region preservation. However, these 
are still solutions that can be applied without any 
deeper knowledge on the problem. Another type 
of crossovers is when specific knowledge of  
a problem is incorporated into the operator to 

facilitate the algorithm convergence and 
effectiveness. The idea was introduced by 
Grefenstette, when he proposed a class of 
heuristic crossover operators for TSP [11].  

The objective function of the map 
optimization problem is to minimize aggregated 
information load of the map or, in other words, 
maximize the figural goodness of the objects’ 
graphical representations. Risk associated with 
the previous crossovers is that they can break  
the building blocks of the solution which are 
good figures. In the course of the algorithm, 
some figures which present high figural 
goodness may be found and can be treated as 
already optimized (the assessment can be done 
using figural goodness coefficient which will be 
discussed later). Such figures should be 
preserved during the crossover operation. This is 
a basis of the heuristic used to develop a new 
operator – Figure Preservation Heuristic 
Crossover (FPHX).  
The general flow of FPHX operator is as follows 
(the whole procedure is carried out separately for 
both parents). First, genes belonging to figures 
that have figural goodness coefficient on some 
required level are selected from the first parent. 
Then, a mapping that maps those selected to 
genes holding the same absolute positions in the 
second parent chromosome is built. Next, a new 
offspring is created, starting with copying  
the genes selected from the first parent, followed 
by transferring missing genes from the second 
parent. The transfer is similar to PMX operator, 
genes’ original positions are kept and it is done 
from left-to-right and top-to bottom, if  
a transferred gen is already present in the 
offspring the mapping is applied. The same 
procedure is performed to create the second 
offspring, but the roles of parents are swapped. It 
should be noted that another set of figures/genes 
is selected and another mapping is prepared after 
the swap. This is due to the fact that the operator 
is not symmetrical and the previous mapping 
would not be valid for the second parent.  
An example of FPHX is presented in Fig. 8. 
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Fig. 8. An example of Figure Preservation Heuristic 
Crossover operator 

 
For the purpose of the FPHX 

parametrization a figural goodness coefficient 
(fgc) was defined: 
 

𝑓𝑔𝑐(𝑓) = 𝑚𝑖𝑛𝐼𝐿(𝑓)
𝑚𝑎𝑥𝐼𝐿(𝑓)

  (2) 

where: 
• maxIL(f) – information load of a maximal 

code of a figure f. The maximal code of f is 
a pure contour code without looking for 
regularities (for details see [23]).  

• minIL(f) – the information load of  
the minimal code of a figure f, where  
the minimal code of f represents preferred 
perceptual interpretation of the figure (for 
details see [23]). 

In the basic version of FPHX operator, the 
figural goodness coefficient parameter is fixed 
through the whole execution of an evolutionary 
algorithm. This version was tested during  
the experiments and provided the best results. 
Although, other extended versions are possible,  
for example FPHX could use relative values of 
figures’ coefficients and select only top N 
figures, where N is another parameter that needs 
to be set before the algorithm execution. FPHX 
(top N) version can also be combined with 
forcing minimal level of the figural goodness 
coefficient among the top N figures. 
Unfortunately, the initial results of the extended 
versions were not promising and, therefore, 
detailed experiments of them were not 
conducted.  
 
 
 

Zonal Repeated Exchange Mutation – ZREM 
 
Zonal Repeated Exchange Mutation is another 
new operator devolved for the purpose of this 
study. As the name may suggest, it is an 
equivalent to Repeated Exchange Mutation that 
operates in the defined zone/region of the matrix 
representation. Application of REM operator to 
the map optimization problem has the same 
disadvantages as any other operator originated 
from the list representation, it does not take into 
account the 2D characteristic of the problem. 
Therefore, polygons influenced by the REM 
operator can be destroyed by transfer of one of 
their vertices to a completely random position. 
To prevent this, a set of transfer-eligible 
positions should be limited to a certain distance 
from the vertex in 2D space. The idea of ZREM 
is that better mutation effects can be achieved if 
random transfer is limited to a parametrized zone 
around a vertex.  
 

 
 

Fig. 9. An example of Zonal Repeated Exchange 
Mutation operator 

 
The zone can be defined freely, in the 
implementation used in this study the zone is  
a square submatrix around a random gene 
defined by a single parameter. The parameter is  
a maximal distance from the gene in four 
directions (top, down, left, right). Fig. 9 shows 
an example of ZREM operator application. 
Summarizing, ZREM operator can be 
parametrized by: 
• mutation count – defines how many times 

the mutation is applied, it can be a fixed 
number or determined, according to some 
probability schema; 

• mutation zone – with four sub-parameters  
(top (T), down (D), left (L), right (R)) it 
defines a zone in which an element is 
shifted, the shift itself is to a random 
position inside the zone. If the zone size 
does not fit on the matrix fully, the zone is 
partially wrapped to the opposite side of  
the matrix. 
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4. Results 
 
The EA approach for the map optimization 
problem was tested in experiments conducted 
using the example repository of diseases (see 
section 1) with 143 symptoms and 78 entities. 
As it was discussed, the complexity of  
the problem was divided into three tasks: Figure 
constructing 𝑂(𝑛!),  Minimal code 𝑂(2𝑛𝑙𝑜𝑔𝑛), 
Map optimization 𝑂(𝑛!). The first two tasks can 
be solved quite efficiently because of the size of 
𝑛 and powerful algorithms available [23]. 
However, in case of the last task n can be 
significantly larger if one would like to build  
a map of broad diseases’ space. Even 143! gives 
a number of the order of 10247. Therefore, 
approximately 32 x 106 map verification per 
second speed is needed to finish the work in one 
year using brute force search. This is not 
achievable without enormous computing power, 
therefore, an unacceptable solution as well.  

To set a background for results 
interpretation, let’s estimate theoretical values of 
aggregated information load of an optimal and 
worst map – for the example repository. Starting 
from the worst map case, it would be a map 
where each of polygons would have no 
regularities. Therefore, the minimal code of each 
figure would be equal to its maximal code [22], 
which is twice the number of a figure sides (sum 
of the number of figure sides and the number of 
interior angles – one symbol per element). In our 
repository, there are 78 diseases and aggregated 
number of their symptoms is 554, which means 
that the worst map would have aggIL of 1108. 
Whereas, during the experiments, it was 
observed that average aggIL of a random map is 
992. 

In the case of the optimal map case each 
polygon would have maximal number of 
regularities, which means each polygon would 
be a regular polygon. A minimal code of any 
regular polygon is 2, since it can be described by 
two symbols – one representing sides length and 
one for angles size. The theoretical optimal map 
would have aggIL equal to 156 (78 diseases 
multiplied by 2). However, the figural goodness 
coefficient (fgc) (see definition 2) observed 
during the experiments in the best maps was on 
average 0.642, while the minimal level was 
0.357. Assuming that all the figures would 
achieve fgc equal to 0.3, such a map would have 
aggIL around 395 (~ 0.3 x 1108). 

Obviously, both of the above cases are 
purely theoretical and there is no proof that such 
maps can be constructed, considering their 
dimensionality, shared symptoms and 

dependencies between polygons. The discussion 
was intended only to approximate the boundaries 
of aggIL space, this will help to place the results 
of the experiments in some context. 
 
4.1.  Experiments description 
 
Experiments were conducted using several 
different setups of evolutionary algorithms’ 
components: crossover operators, mutation 
operators, selection strategies and their 
parameters described in section 3.  

Since the space of potential combination is 
very large, before the final evaluation was done, 
a preliminary assessment of various approaches 
was conducted. The assessment covered 
especially parameters of algorithms execution 
like: population size, mutation amount and 
count, selection strategies’ specific parameters 
and operators’ specific parameters (like figural 
goodness coefficient in the case of the FPHX 
crossover operator). Only those parameters 
ranges and algorithm setups that showed 
promising results were tested further. A very 
important observation was that for the given 
problem the (μ, λ)-ES selection strategy was 
optimal. In the case of others which were also 
initially verified such as: Truncation Selection, 
Roulette Wheel Selection, Rank Selection, 
Tournament Selection, the issue was premature 
convergence mostly. Finally, (μ, λ)-ES was 
applied in all the setups.  

The evaluated setups can be found in  
Tab. 1. Each of the setup was executed 5 times 
and the stop condition was stagnation of  
the mean fitness of the population for more than 
50 generations.  Evaluation of the results was 
done using several types of metrics. These are 
metrics based on objective function results, 
metrics based on figural goodness coefficient 
and metrics related to EA qualities itself. All the 
metrics’ definitions can be found in Tab. 2. 
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Tab. 1. The evaluated setups of evolutionary 
algorithms (DUD – discrete uniform distribution) 

 
Setups/ 
operator 

PMX-
setup 

POS-
setup 

PBMX-
setup 

RMX-
setup 

FPHX
-setup 

ZREM-
setup 

REM-
setup 

crossover 
operator 

PMX POS PBMX RMX FPHX - 
wrap.str
ategy 

N/A N/A 

mutation 
operator 

REM REM ZREM ZREM ZREM ZREM REM 

mutation 
count 

Poisson 
dist. 
(λ=2) 

Poisson 
dist. 
(λ=2) 

Poisson 
dist. 
(λ=2) 

Poisson 
dist. 
(λ=1) 

Poisson 
dist. 
(λ=1) 

Poisson 
dist. 
(λ=1) 

Poisson 
dist. 
(λ=1) 

mutation 
amount 

DUD 
in: 
[1,8] 

DUD 
in: 
[1,8] 

N/A N/A N/A N/A DUD 
in: 
[1,8] 

mutation 
zone  

N/A N/A DUD in 
zone: 
T= 1 
D= 1 
L = 1 
R = 1 

DUD in 
zone: 
T= 1 
D= 1 
L = 1 
R = 1 

DUD in 
zone: 
T= 1 
D= 1 
L = 1 
R = 1 

DUD in 
zone: 
T= 4 
D= 4 
L = 4 
R = 4 

N/A 

selection 
strategy 

(μ, λ) 
μ=200 
λ=400 

(μ, λ) 
μ=100 
λ=400 

(μ, λ) 
μ=100 
λ=400 

(μ, λ) 
μ=200 
λ=400 

(μ, λ) 
μ=200 
λ=400 

(μ, λ) 
μ=20 
λ=400 

(μ, λ) 
μ=200 
λ=400 

crossover 
factor 

N/A N/A N/A N/A 0.5 N/A N/A 

fgc N/A N/A N/A N/A 0.65 N/A N/A 

 
Tab. 2. Results evaluation metrics 

 
Category  Metric 

Name 
Definition 

Objective 
function 
related 

aggIL-top Lowest aggregated IL of best 
candidates from all executions 

aggIL-avg Average aggregated IL of best 
candidates from all executions 

aggIL-
worst 

Worst of aggregated IL of best 
candidates from all executions 

Figural 
goodness 
coefficient 
related 

fgc-avg Average figural goodness 
coefficient of the best candidate 
map found in all executions  

fgc-max Maximal figural goodness 
coefficient observed in the best 
candidate map found in all 
executions 

fgc-min Minimal figural goodness 
coefficient observed in the best 
candidate map found in all 
executions 

EA 
qualities 
related 

gen-num Number of finished generation until 
the best candidate was found  

search-
space 

Number of evaluated candidates 
until the best candidate was found  

 
4.2.  Analysis of results 
 
The overall results of the experiments can be 
found in Tab. 3. Starting with a brief summary, 
the best results in terms of objective functions 
and figural goodness coefficient metrics were 
achieved using PMX-setup. The aggregated IL 

of the best map that was found is 679 with  
the average fgc equal to 0.642. Comparing  
this to an average aggIL of a random map equal 
to 992, it is approximately a 32% improvement. 
The search space until the best map was found 
was ~340 K candidates in 851 generations. Other 
setups achieved worse results, the second was 
RMX-setup with ~26% improvement level,  
the third was FPHX-setup with ~22% 
improvement. The FPHX-setup stands out by  
the low number of generation and, therefore,  
the size of the search space until the best 
candidate was found, which was approximately 
~64 K. It is also worth emphasizing ZREM-
setup results, the setup includes only the Zonal 
Repeated Exchange Mutation operator without 
application of any crossover operator.  
The achieved aggIL-top gives ~20% 
improvement compared to the random map.  
The remaining setups, which are POS-setup and 
PBMX-setup, had worse performance – below 
16% of improvement. 

 
Tab. 3. Metrics for the evaluated setups of 

evolutionary algorithms 
 

Metrics PMX-
setup 

POS-
setup 

PBMX-
setup 

RMX-
setup 

FPHX-
setup 

ZREM REM 

aggIL-
top 679 826 864 737 774 789 830 

aggIL-
avg 689.4 828.6 872.2 740.6 783 793,6  835.8 

aggIL-
worst 698 833 878 747 790 797  842 

fgc-min 0.357 0.375 0.611 0.375 0.375 0.5 0.5 

fgc-avg 0.642 0779 0.815 0.701 0.718 0.748 0.782 

fgc-max 1 1 1 1 1 1 1 

gen-
num 851 476 319 974 162 672 479 

search-
space ~340K ~190K ~127K ~389K ~~64K ~268K ~155K 

 
Let’s verify how accurate the theoretical 

considerations on the effectiveness of operators 
from section 3 were. Recognized PMX operator 
advantages were the preservation of segments 
from the first parent and preservation of absolute 
positions of elements from the second parent. 
While, the potential issue that was noticed was 
its focus on 1D – an ordered list chromosome 
representation. The new specialized operator that 
was proposed to overcome the 1D issue was 
Region Mapping Crossover (RMX), which 
works on matrix crossover representation and 
instead of 1D sequences is based on 2D matrix 
regions. In contradiction to the theoretical 
assumptions, the results show that setups with 
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PMX operator have better performance than 
those with RMX operator. A possible 
explanation of good achievements of PMX is 
that even though it preserves 1D segments,  
the size of the segments is not limited.  
This means that large segments are in fact 
regions formed of several rows of the matrix. 
Harder to explain is worse performance of 
RMX. The reason here can be related to specific 
conditions of the particular problem or region 
selection methods. A detailed analysis of these 
particular observations could be very complex 
and since it is not a direct goal of the study it 
will not be elaborated further here. 

The POS operator preserves position of 
selected genes from the first parent and ordering 
of genes from the second parent. The first part 
(positions preservations) is representation 
agnostic and there is no difference in applying it 
to 1D and 2D representations. On the other hand, 
the second part was criticized in the context of 
the objective function, since the ordering is not 
important in map optimization. To improve  
the POS operator, the PBMX operator was 
proposed, which was designed to replace  
the ordering part with preservation of the genes 
from the second parent. It was achieved by using 
the mapping technique known from the PMX 
operator. Finally, the setups with the PBMX 
operator had the worst results and the setup with 
the POS operator the second worst result.  
Analyzing the data, it turns out that the major 
issue with both of the operators is the first phase, 
where a random selection of genes for 
preservation is performed. The randomness 
causes that figures do not survive in their 
entirety. What is worse, even coherent fragments 
of figures do not survive, only random vertices. 
Therefore, the algorithm quickly stagnates.  
As the experiments showed, enforcing  
the second parent genes position preservation by 
defining a mapping causes an even quicker 
stagnation. The explanation here is lower 
diversity of candidates that the additional 
preservation introduces. 

A certain solution to the issues reported in 
case of the POS and PBMX operators is  
the FPHX operator. The technique is very 
similar to PBMX, with the difference that genes 
from the first parent are not randomly selected 
but belong to figures with the highest figural 
goodness coefficient. The approach proved to be 
significantly better than POS and PBMX. It did 
not achieve the level of PMX, but its advantage 
is a significantly smaller search space to find 
candidates with over 20% improvement level. 

Still, the operator issue is low diversity and, 
therefore, quick stagnation.  

ZREM setup execution was initially 
conducted to validate the new proposed mutation 
operator for 2D genotype representations.  
The effects were good and demonstrated that  
the ZREM operator works well for the matrix 
representation – better than the list 
representation dependent REM operator. 
 
4.3.  Discussion of the top map 
 
The previous chapter already introduced that 
PMX-setup achieved the best performance in 
terms of the objective function. To better 
illustrate the result, let’s analyze the disease’s 
representation produced by the best map in  
a context of other close to random maps. Tab. 4 
presents key metrics of two maps:   
• TopMap – the top map (the best found map 

for the example repository of diseases, 
taking all experiments into account)  

• 1stGenMap – the best candidate map after 
first generation of the same run of  
the algorithm during which the TopMap 
was found. 

Comparing these two maps, the average figural 
goodness coefficient of all the represented 
figures has dropped from 0.914 (1stGenMap) to 
0.642 (TopMap) and minimal fgc levels changed 
from 0.727 to 0.357 respectively. The practical 
impact on the regularities in the disease 
representations can be seen in Figures 10 to 16, 
where examples of polygons with different fgc 
are presented using both maps. As it was 
expected, differences are easily noticeable.  
The polygons show significant regularities even 
at the level of 0.7 fgc (see Fig. 15 and 16).  
 

Tab. 4. Metrics of TopMap and 1stGenMap 
 

Metrics TopMap  1stGenMap 

aggIL 679 970 
fgc-min 0.357 0.727 
fgc-avg 0.642 0.914 
fgc-max 1.0 1.0 
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a) fgc = 0.357  b) fgc = 0.928 

 
 

Fig. 10. Hypertrophic Cardiomyopathy represented 
on maps with different levels of aggIL:  

a) TopMap; b) 1stGenMap 
 
 

a) fgc = 0.444   b) fgc = 0.750 

 
 

Fig. 11. Pulmonary Edema represented on maps  
with different levels of aggIL: 

a) TopMap; b) 1stGenMap 
 
 

a) fgc = 0.450 b) fgc = 0.900 

 
 

Fig. 12. Diverticulitis represented on maps  
with different levels of aggIL:  

a) TopMap; b) 1stGenMap 
 
 

a) fgc = 0.555  b) fgc = 0.888 

 
 

Fig. 13. Atrioventricular Canal Defect represented  
on maps with different levels of aggIL: 

a) TopMap; b) 1stGenMap 

a) fgc = 0.642 b) fgc = 1.0 

 
 

Fig. 14. Peptic Ulcer represented on maps  
with different levels of aggIL:  

a) TopMap; b) 1stGenMap 
 
 

a) fgc = 0.687  b) fgc = 1.0 

 
 

Fig. 15. Stomach Cancer represented on maps  
with different levels of aggIL:  

a) TopMap; b) 1stGenMap 
 
 

a) fgc = 0.714 b) fgc = 1.0 

 
 

Fig. 16. Hemochromatosis represented on maps  
with different levels of aggIL: 

a) TopMap; b) 1stGenMap 
 
5. Summary 
 
The study presents a heuristic approach to the 
preparation of a map of attributes for a given 
data set. Evolutionary algorithms are applied to 
solve the map optimization problem. Multiple 
experiments assessing EA effectiveness were 
conducted using an example repository of 
disease entities. In addition to well-known 
evolutionary algorithms’ operators that were 
tested, several new ones, specialized for matrix 
representation of a chromosome, were proposed. 
Their evaluation was done on the basis of  
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the MoA optimization problem. Newly 
elaborated operators include: Region Mapping 
Crossover (RMX), Position Preservation 
Crossover (PPX), Figure Preservation Heuristic 
Crossover (FPHX), Zonal Repeated Exchange 
Mutation (ZREM).  

The best of evolutionary algorithm setups 
reaches an approximate of 32% enhancement in 
comparison to a random map. This result gives  
a significant improvement in terms of figure 
regularities represented on the map, still it is far 
from potential optimum (see section 4). 
Therefore, possible direction of further research 
can be constructing an alternative algorithm for 
solving the MoA optimization problem. 
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Algorytmy ewolucyjne w optymalizacji Mapy Atrybutów  
 

T. RZEŹNICZAK 
 
Mapa atrybutów (MoA, z ang. Map of Attributes) to technika wizualizacji, która pozwala konstruować graficzną 
reprezentację abstrakcyjnych obiektów. Celem działania techniki jest wsparcie rozpoznawania graficznej 
reprezentacji obiektów przez efektywne wykorzystanie percepcyjnych zdolności człowieka. Pewną trudnością 
stosowania MoA jest złożoność obliczeniowa znajdywania optymalnej mapy. W artykule przedstawiono 
heurystyczne podejście bazujące na algorytmach ewolucyjnych (EA, z ang. evolutionary algorithms) do 
konstruowania wizualizacji MoA. Metoda została zbadana z wykorzystaniem repozytorium jednostek 
chorobowych jako zbioru danych wejściowych. Kilka różnych konfiguracji EA zostało zweryfikowanych, były 
to konfiguracje z zastosowaniem dobrze znanych operatorów ewolucyjnych, jak również konfiguracje z nowo 
zaproponowanymi operatorami dla macierzowej reprezentacji chromosomu. Artykuł prezentuje szczegółowe 
wyniki oraz analizę przeprowadzonych eksperymentów. 
 
Słowa kluczowe: algorytmy ewolucyjne, wizualizacja danych, operatory ewolucji. 


