PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Evaluation of asphalt mixtures from the correction of the failure area in the IDEAL test

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The IDEAL cracking test was developed in 2019 in the Texas A&M Transportation Institute as an alternative to evaluate the fracture tolerance of asphalt mixtures by the same indirect tensile strength test but with a different interpretation. In this methodology, the fracture area is described as a plane surface. However, the fracture of the asphalt mix is characterized by its irregularity and a non-uniform failure surface. For this reason, this work presents a model to determine the actual area of the failure for a set of asphalt mixtures with different characteristics using a 3D scanner. The main goal is to determine a possible correction factor of the actual fracture surface and observe the IDEAL test modification. This study shows that it is possible to standardize the correction factor for four of the five mixtures.
Słowa kluczowe
Rocznik
Strony
63--82
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
  • Universidad Militar Nueva Granada Bogota D.C., Colombia
  • Universidad Militar Nueva Granada Bogota D.C., Colombia
  • Universidad Militar Nueva Granada Bogota D.C., Colombia
Bibliografia
  • 1. Zhou F., Newcomb D., Gurganus Ch., Banihashemrad S., Park E.S., Sakhaeifar M., Lytton R.L., Final Report of NCHRP 9-57: Experimental Design for Field Validation of Laboratory Tests to Assess Cracking Resistance of Asphalt Mixtures, Texas A&M Transportation Institute, 2016.
  • 2. Falla G.C., Leischner S., Blasl A, Erlingsson S., Characterization of unbound granular materials within a mechanistic design framework for low volume roads, Transportation Geotechnics, 13: 2–12, 2017, doi: 10.1016/j.trgeo.2017.08.010.
  • 3. Zhou F., Final Report for NCHRP IDEA Project 195: Development of an IDEAL Cracking Test for Asphalt Mix Design, Quality Control and Quality Assurance, Texas A&M Transportation Institute, 2019.
  • 4. Lu D.X., Saleh M., Nguyen N.H.T., Effect of rejuvenator and mixing methods on behaviour of warm mix asphalt containing high RAP content, Construction and Building Materials, 197: 792–802, 2019, doi: 10.1016/j.conbuildmat.2018.11.205.
  • 5. Ziari H., Moniri A., Laboratory evaluation of the effect of synthetic Polyolefin-glass fibers on performance properties of hot mix asphalt, Construction and Building Materials, 213: 459–68, 2019, doi: 10.1016/j.conbuildmat.2019.04.084.
  • 6. Pérez-Jiménez F., Botella R., Moon K.-H., Marasteanu M., Effect of load application rate and temperature on the fracture energy of asphalt mixtures. Fénix and semi-circular bending tests, Construction and Building Materials, 48: 1067 1071, 2013, doi: 10.1016/j.conbuildmat.2013.07.084.
  • 7. Mahyuddin A., Tjaronge M.W., Ali N., Isran Ramli M., Experimental analysis on stability and indirect tensile strength in asphalt emulsion mixture containing buton granular asphalt, International Journal of Applied Engineering Research, 12(12): 3162–3169, 2017.
  • 8. Valdés Vidal G., Evaluation of the cracking process in bituminous mixtures through the development of a new experimental test: Fénix Test [in Spanish: Evaluación del proceso de fisuración en las mezclas bituminosas mediante el desarrollo de un nuevo ensayo experimental: Ensayo Fénix], Ph.D.Thesis, Prog. ITT. Univ. Cataluna, Barcelona, 2011.
  • 9. Reyes-Ortiz O.J., Alvarez-Lugo A.E., Botella-Nieto R., Study of a hot asphalt mixture response based on energy concepts, DYNA, 78(168): 45–52, 2011.
  • 10. Moaveni M., Cetin S., Brand A.S.., Dahal S., Roesler J.R., Tutumluer E., Machine vision based characterization of particle shape and asphalt coating in Reclaimed Asphalt Pavement, Transportation Geotechnics, 6: 26–37, 2016, doi: 10.1016/j.trgeo.2016.01.001.
  • 11. Tsai B.-W., Coleri E., Harvey J.T., Monismith C.L., Evaluation of AASHTO T 324 Hamburg-Wheel Track Device test, Construction and Building Materials, 114: 248–60, 2016, doi: 10.1016/j.conbuildmat.2016.03.171.
  • 12. Hull D., Fractography: Observing, Measuring and Interpreting Fracture Surface Topography, Cambridge University Press, Cambridge, 1999.
  • 13. Reyes-Ortiz O.R., Mejía M., Useche-Castelblanco J.S., Aggregate segmentation of asphaltic mixes using digital image, Bulletin of the Polish Academy of Sciences: Technical Sciences, 67(2): 279–287, 2019, doi: 10.24425/bpas.2019.128115.
  • 14. Reyes Ortiz O.J., Fuentes Pumarejo L.G., Moreno-Torres O.H., Behavior of asphalt mixtures made with wax-modified asphalt [in Spanish: Comportamiento de mezclas asfálticas fabricadas con asfaltos modificados con ceras], Rev Científica Ing y Desarro, 31(1): 161–178, 2013.
  • 15. Inzerillo L., Di Mino G., Roberts R., Image-based 3D reconstruction using traditional and UAV datasets for analysis of road pavement distress, Automation in Construction, 96: 457–469, 2018, doi: 10.1016/j.autcon.2018.10.010.
  • 16. Anderson T.L., Fracture Mechanics: Fundamentals and Applications, 4th ed., CRC Press; 2017.
  • 17. Wang L., Ren M., Xing Y., Chen G., Study on affecting factors of interface crack for asphalt mixture based on microstructure, Construction and Building Materials, 156: 1053–1062, 2017, doi: 10.1016/j.conbuildmat.2017.05.160.
  • 18. Stewart C.M., Garcia E., Fatigue crack growth of a hot mix asphalt using digital image correlation, International Journal of Fatigue, 120: 254–266, 2019, doi: 10.1016/j.ijfatigue.2018.11.024.
  • 19. Espinosa L., Wills J., Caro S., Braham A., Influence of the morphology of the cracking zone on the fracture energy of HMA materials, Materials and Structures, 52(2): Article number 35, 2019, doi: 10.1617/s11527-019-1334-0.
  • 20. INVIAS, Road Construction Specifications and Testing Standards for Road Materials [in Spanish: Especificaciones de construcción de carreteras y normas de ensayos para materiales de carreteras], Inst Nac Vías – Minist Transp, Colombia, 2013.
  • 21. Anochie-Boateng J., Tutumluer E., Characterizing resilient behavior of naturally occurring bituminous sands for road construction, Journal of Materials in Civil Engineering, 22(11): 1085–1092, 2010, doi: 10.1061/(ASCE)MT.1943-5533.0000115.
  • 22. Wang Y., Binaud N., Gogu C., Bes C., Fu J., Determination of Paris’ law constants and crack length evolution via Extended and Unscented Kalman filter: An application to aircraft fuselage panels, Mechanical Systems and Signal Processing, 80: 262 281, 2016, doi: 10.1016/j.ymssp.2016.04.027.
  • 23. Papangelo A., Guarino R., Pugno N., Ciavarella M., On unified crack propagation laws, Engineering Fracture Mechanics, 207: 269–276, 2019, doi: 10.1016/j.engfracmech. 2018.12.023.
  • 24. Alvarez-Lugo A.E., Reyes-Ortiz O.J., Miró R., A review of the characterization and evaluation of permeable friction cource mixtures [in Spanish: Revisión de la caracterizacióny evaluación de mezclas drenantes], Ingeniare. Revista chilena de ingeniería, 22(4): 469–482, 2014.
  • 25. Rami K.Z., Amelian S., Kim Y.-R., You T., Little D.N., Modeling the 3D fractureassociated behavior of viscoelastic asphalt mixtures using 2D microstructures, Engineering Fracture Mechanics, 182: 86–99, 2017, doi: 10.1016/j.engfracmech.2017.07.015.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e2d520e8-0cfb-40ae-ac40-b8b2dc7052d1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.