PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of Al2O3, ZnO, and TiO2 ALD thin films as antireflection coating in the silicon solar cells

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article describes the results of a research on the surface morphology and optical properties of Al₂O₃, ZnO, and TiO₂ thin films deposited by atomic layer deposition (ALD) for applications in silicon solar cells. The surface topography and elemental composition were characterised using a scanning electron microscope, and thickness was determined using an optical reflectometer. The samples were structurally examined using a Raman spectrometer. The structural variant was identified: for Al₂O₃ it is sapphire, for TiO₂ it is anatase, and for ZnO it is wurtzite. Possibilities of minimising light reflection using single and double thin film systems below 5% were presented. For the first time, the effectiveness of these thin films on the current-voltage characteristics and electrical parameters of manufactured silicon solar cells was examined and compared. The solar cell with the highest efficiency of converting solar radiation into electricity was obtained for Al₂O₃/TiO₂ and the efficiency of such a photovoltaic device was 18.74%.
Rocznik
Strony
art. no. e148223
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
  • Scientific and Didactic Laboratory of Nanotechnology and Material Technologies, Faculty of Mechanical Engineering, Silesian University of Technology, ul. Towarowa 7, 44-100 Gliwice, Poland
  • Department of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
  • [1] Leon, J. J. D., Hiszpanski, A. M., Bond, T. C. & Kuntz, J. D. Design rules for tailoring antireflection properties of hierarchical optical structures. Adv. Opt. Mater. 5, 1700080 (2017). https://doi.org/10.1002/adom.201700080.
  • [2] Mousa, H. M., Shabat, M. M. & Karmoot, M. R. Double layer antireflection coating design for conductive solar cells. Rom. Rep. Phys. 72, 1-18 (2020). https://rrp.nipne.ro/2020/AN72416.pdf.
  • [3] Dobrzański, L. A., Szindler, M., Drygała, A. & Szindler, M. M. Silicon solar cells with Al2O3 antireflection coating. Cent. Eur. J. Phys. 12, 666-670 (2014). https://doi.org/10.2478/s11534-014-0500-9.
  • [4] Sarkar, S. & Pradhan, S. K. Silica-based antireflection coating by glancing angle deposition. Surf. Eng. 35, 982-985 (2019). https://doi.org/10.1080/02670844.2019.1596578.
  • [5] Szindler, M., Szindler, M. M., Boryło, P. & Jung, T. Structure and optical properties of TiO2 thin films deposited by ALD method. Open Phys. 15 1067-1071 (2017). https://doi.org/10.1515/phys-2017-0137.
  • [6] Marszalek, M., Winkowski, P. &, Jaglarz, J. Optical properties of the Al2O3/SiO2 and Al2O3/HfO2/SiO2 antireflective coatings. Mater. Sci.-Pol. 32, 80-87 (2014).https://doi.org/10.2478/s13536-013-0156-y.
  • [7] Dong, C. et al. Low emissivity double sides antireflection coatings for silicon wafer at infrared region. J. Alloys Compd. 742, 729-735 (2018). https://doi.org/10.1016/j.jallcom.2018.01.384.
  • [8] Boryło, P. et. al. Structure and properties of Al2O3 thin films deposited by ALD proces. Vacuum 131, 319-326 (2016). https://doi.org/10.1016/j.vacuum.2016.07.013.
  • [9] Jaglarz, J., Pukowska, B., Kisiel A., Olejniczak, J., Mycielski A. & Jurusik, J. Influence of hydrogen treatment of CdTe crystals on the reflectivity spectra. J. Alloys Compd. 371, 125-128 (2004). https://doi.org/10.1016/j.jallcom.2003.08.105.
  • [10] Boryło, P. et al. The influence of atomic layer deposition process temperature on ZnO thin film structure. Appl. Surf. Sci. 474, 177-186 (2019). https://doi.org/10.1016/j.apsusc.2018.03.169.
  • [11] Baji, Z. et.al. Highly conductive epitaxial ZnO layers deposited by atomic layer deposition. Thin Solid Films 562, 485-489 (2014). https://doi.org/10.1016/j.tsf.2014.04.047.
  • [12] Hou, G. J., Garcia, I. & Rey-Stolle, I. High-low refractive index stacks for broadband antireflection coatings for multijunction solar cells. Sol. Energy 217, 29-39 (2021). https://doi.org/10.1016/j.solener.2021.01.060.
  • [13] Sarkın, A. S., Ekren, N. & Saglam, S. A review of anti-reflection and self-cleaning coatings on photovoltaic panels. Sol. Energy 199, 63-73 (2020). https://doi.org/10.1016/j.solener.2020.01.084.
  • [14] Drabczyk, K., Kulesza-Matlak, G. & Drygała, A. Electroluminescence imaging for determining the influence of metallization parameters for solar cell metal contacts. Sol. Energy 126, 14-21 (2016). https://doi.org/10.1016/j.solener.2015.12.029.
  • [15] Park, H. H. Inorganic materials by atomic layer deposition for perovskite solar cells. Nanomaterials 11, 1-22 (2021). https://doi.org/10.3390/nano11010088.
  • [16] Hossain, A. et al. Atomic layer deposition enabling higher efficiency solar cells: A review. Nano Mater. Sci. 2, 204-209 (2020). https://doi.org/10.1016/j.nanoms.2019.10.001.
  • [17] Shanmugam, N., Pugazhendhi, R., Elavarasan, R. M., Kasiviswanatha, P. & Das, N. Anti-reflective coating materials: a holistic review from pv perspective. Energies 13, 1-28 (2020). https://doi.org/10.3390/en13102631.
  • [18] Zhang, W. et al. Broadband graded refractive index TiO2/Al2O3/MgF2 multilayer antireflection coating for high efficiency multi-junction solar cell. Sol. Energy 217, 271-279 (2021). https://doi.org/10.1016/j.solener.2021.01.012.
  • [19] Schmidt, J. et al. Advances in the surface passivation of silicon solar cells. Energy Proc. 15, 30-39 (2012). https://doi.org/10.1016/j.egypro.2012.02.004.
  • [20] Ukoba, O. K. & Jen, T.-C. Review of atomic layer deposition of nanostructured solar cells. J. Phys. Conf. Ser. 1378, 1-14 (2019). https://doi.org/10.1088/1742-6596/1378/4/042060.
  • [21] Szindler, M. M., Szindler M., Basiaga M., Łoński, W. & Kaim, P. Application of ALD Thin films on the surface of the surgical scalpel blade. Coatings 11, 1-13 (2021). https://doi.org/10.3390/coatings11091096.
  • [22] Hu, Sh.-H., Lin, Y.-Sh., Tseng, T.-K., Su, Sh.-H. & Wu, L.-Ch. Reducing light reflection by processing the surface of silicon solar cells. J. Mater. Sci. Mater. Electron. 31, 7616-7622 (2020). https://doi.org/10.1007/s10854-020-03253-6.
  • [23] Leskelä, M. & Ritala M. Atomic layer deposition (ALD): from precursors to thin film structures. Thin Solid Films 409, 138-139 (2002). https://doi.org/10.1016/S0040-6090(02)00117-7.
  • [24] George, S. M. Atomic layer deposition: An overview. Chem. Rev. 110, 111-131 (2010). https://doi.org/10.1021/cr900056b.
  • [25] Prokes, S. M., Katz, M. B. & Twigg, M. E. Growth of crystalline Al2O3 via thermal atomic layer deposition: Nanomaterial phase stabilization. APL Mater. 2, 245-254 (2014). https://doi.org/10.1063/1.4868300.
  • [26] Cai, J. et al. A revisit to atomic layer deposition of zinc oxide using diethylzinc and water as precursors. J. Mater. Sci. 5236-5248 (2019). https://doi.org/10.1007/s10853-018-03260-3.
  • [27] Aarik, J., Aidla, A., Mändar, H. & Uustare, T. Atomic layer deposition of titanium dioxide from TiCl4 and H2O: investigation of growth mechanism. Appl. Surf. Sci. 172, 148-158 (2001). https://doi.org/10.1016/S0169-4332(00)00842-4.
  • [28] Beye, M. et. al. Antireflection coatings combining silicon nitride with silicon nanoparticles. Int. J. Eng. Res. Technol. 1, 73-78 (2014).
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e2cf38ca-a7f1-4c41-adaf-e6a33877f1f9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.