PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Microstructure and surface free energy of light-cured dental composites after their modification with liquid rubber

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The use of liquid rubber as a component of light-cured dental composites is one of the methods of increasing their fracture toughness. It also reduces polymerization shrinkage and offers the potential to lower water sorption. The aim of the study was to evaluate the miscibility of liquid rubber in composite matrix resins as well as changes in the wettability and surface free energy (SFE) values of commercial lightcuring composites after their modification with liquid rubber. The research materials were Flow Art and Boston (Arkona) light-cured composites and resin mixtures used in their production. Liquid rubber Hypro 2000X168LC VTB (Huntsman Int.) was used as a modifier. The solubility of liquid rubber was assessed under light microscopy. The contact angle and SFE measurements were made on a DSA30 goniometer (Kruss) using water and diiodomethane. It was found that the liquid rubber solubility depended mainly on the viscosity of the resin, which was related to the amount of BisGMA. The resulting mixture showed good temporal stability without larger domains. The curing process released the liquid rubber as a separate phase formed as spherical domains. The morphology of these domains was homogeneous and their size did not exceed 50 µm in diameter. The presence of liquid rubber in modified composites increased their hydrophobicity and reduced the surface free energy value. The obtained properties might help to reduce the formation of bacterial biofilm on dental fillings.
Rocznik
Strony
9--15
Opis fizyczny
Bibliogr. 38 poz., tab., wykr., zdj.
Twórcy
autor
  • Lublin University of Technology, Faculty of Mechanical Engineering, Nadbystrzycka 36, 20-618 Lublin, Poland
  • Medical University of Lublin, Independent Unit of Tissue Engineering and Regenerative Medicine, Chodzki 1, 20-093 Lublin, Poland
  • Lublin University of Technology, Faculty of Mechanical Engineering, Nadbystrzycka 36, 20-618 Lublin, Poland
Bibliografia
  • [1] Bociong K., Krasowski M., Domarecka M., Sokołowski J.: Wpływ metody fotopolimeryzacji kompozytów stomatologicznych na bazie zywic dimetakrylanowych na naprȩzenia skurczowe oraz wybrane właściwości utwardzonego materiału. Polimery/Polymers 61 (2016) 499-508.
  • [2] Pawłowska E., Loba K., Błasiak J., Szczepańska J.: Właściwości i ryzyko stosowania metakrylanu bisfenolu a i dimetakrylanu uretanu - podstawowych monomerów kompozytów stomatologicznych. Dent. Med. Probl. 46 (2009) 477-485.
  • [3] Schmidseder J., Stomatologia Estetyczna. Wydawnictwo Czelej 2011.
  • [4] Garoushi S., Lassila L.V.J., Vallittu P.K.: Influence of nanometer scale particulate fillers on some properties of microfilled composite resin. J. Mater. Sci. Mater. Med. 22 (2011) 1645-1651.
  • [5] Ferracane J.L.: Current trends in dental composites. Crit. Rev. Oral Biol. Med. 6 (1995) 302-318.
  • [6] Braga R. R., Hilton T.J., Ferracane J.L.: Contraction stress of flowable composite materials and their efficacy as stress-relieving layers. J. Am. Dent. Assoc. 134 (2003) 721-728.
  • [7] Priyalakshmi S., Ranjan M.: A Review on Marginal Deterioration of Composite Restoration. IOSR J. Dent. Med. Sci. 13 (2014) 06-09.
  • [8] Fennis W.M.M., Kuijs R.H., Kreulen C.M., Roeters F.J.M., Creugers N.H.J., Burgersdijk R.C.W.: A survey of cusp fractures in a population of general dental practices. Int. J. Prosthodont. 15 (2002) 559-63.
  • [9] Ferracane J.L., Mitchem J.C.: Relationship between composite contraction stress and leakage in Class V cavities. Am. J. Dent. 16 (2003) 239-243.
  • [10] Ferracane J.L.: Models of Caries Formation around Dental Composite Restorations. J. Dent. Res. 96 (2017) 364-371.
  • [11] Kuper N.K., Van De Sande F.H., Opdam N.J.M., Bronkhorst E.M., De Soet J.J., Cenci M.S., Huysmans M.C.D.J.N.M.: Restoration materials and secondary caries using an in vitro biofilm model. J. Dent. Res. 94 (2015) 62-68.
  • [12] Celerino I.C.C.M.: Post-operative sensitivity in direct resin composite restorations: Clinical practice guidelines. Int. J. Res. Discov. 1 (2012) 1-12.
  • [13] Ilie N., Hickel R.: Resin composite restorative materials. Aust. Dent. J. 56 (2011) 59-66.
  • [14] Kim K., Ong J., Okuno O.: The effect of filler loading and morphology on the mechanical properties of contemporary composites. J. Prosthet. Dent. 87 (1992) 642-649.
  • [15] Xu H.H.K., Quinn J.B., Smith D.T., Giuseppetti A.A., Eichmiller F.C.: Effects of different whiskers on the reinforcement of dental resin composites. Dent. Mater. 19 (2003) 359-367.
  • [16] Elbishari H., Satterthwaite J., Silikas N.: Effect of filler size and temperature on packing stress and viscosity of resin-composites. Int. J. Mol. Sci. 12 (2011) 5330-5338.
  • [17] Xu H.H.K.: Dental composite resins containing silica-fused ceramic single-crystalline whiskers with various filler levels. J. Dent. Res. 78 (1999) 1304-1311.
  • [18] Pałka K., Janiczuk P., Kleczewska J.: Polymerization shrinkage of resin mixtures used in dental composites. Eng. Biomater. 154 (2020) 16-21.
  • [19] Pałka K.: Polymerization Shrinkage of New Dental Composites Modified With Liquid Rubber. Eng. Biomater. 158 (2020) 19.
  • [20] Lee V.A., Cardenas H.L., Rawls H.R.: Rubber-toughening of dimethacrylate dental composite resin. J. Biomed. Mater. Res. - Part B Appl. Biomater. 94 (2010) 447-454.
  • [21] Kerby R.E., Tiba A., Knobloch L.A., Schricker S.R., Tiba O.: Fracture toughness of modified dental resin systems. J. Oral Rehabil. 30 (2003) 780-784.
  • [22] Matsukawa S., Hayakawa T., Nemoto K.: Development of high-toughness resin for dental applications. Dent. Mater. 10 (1994) 343-346.
  • [23] Palka K., Kleczewska J., Sasimowski E., Belcarz A., Przekora A.: Improved fracture toughness and conversion degree of resin-based dental composites after modification with liquid rubber. Materials (Basel) 13 (2020) 1-13.
  • [24] Rodford R.A.: Further development and evaluation of high impact strength denture base materials. J. Dent. 18 (1990) 151-157.
  • [25] Dusek K., Lednicky F., Lunak S., Mach M., Duskova D.: Toughening of Epoxy Resins With Reactive Polybutadienes., in: Riew C.K.,
  • Gillham J.K. (Eds.), Advances in Chemistry Series. Advances in Chemistry (1984) 27-35.
  • [26] Deb S., Braden M., Bonfield W.: Water absorption characteristics of modified hydroxyapatite bone cements. Biomaterials 16 (1995) 1095-1100.
  • [27] Sadek F.T., Castellan C.S., Braga R.R., Mai S., Tjäderhane L., Pashley D.H., Tay F.R.: One-year stability of resin-dentin bonds created with a hydrophobic ethanol-wet bonding technique. Dent. Mater. 26 (2010) 380-386.
  • [28] Pałka K., Miazga‐Karska M., Pawłat J., Kleczewska J., Przekora A.: The effect of liquid rubber addition on the physicochemical properties, cytotoxicity and ability to inhibit biofilm formation of dental composites. Materials (Basel) 14 (2021) 1704.
  • [29] Moussa D.G., Fok A., Aparicio C.: Hydrophobic and antimicrobial dentin: A peptide-based 2-tier protective system for dental resin composite restorations. Acta Biomater. 88 (2019) 251-265.
  • [30] CVC Thermoset Specialties, Hypro ® 2000X168LC VTB. Technical Bulletin. 2019.
  • [31] Rudawska A., Jacniacka E.: Analysis for determining surface free energy uncertainty by the Owen-Wendt method. Int. J. Adhes. Adhes. 29 (2009) 451-457.
  • [32] Rüttermann S., Trellenkamp T., Bergmann N., Raab W.H.M., Ritter H., Janda R.: A new approach to influence contact angle and surface free energy of resin-based dental restorative materials. Acta Biomater. 7 (2011) 1160-1165.
  • [33] Cornelio R.B., Wikant A., Mjosund H., Kopperud H.M., Haasum J., Gedde U.W., Örtengren U.T.: The influence of bis-EMA vs bis GMA on the degree of conversion and water susceptibility of experimental composite materials. Acta Odontol. Scand. 72 (2014) 440-447.
  • [34] Xu S.A.: Miscibility and Phase Separation of Epoxy/Rubber Blends, in: Parameswaranpillai J., Hameed N., Pionteck J., Woo E.M. (Eds.), Handbook of Epoxy Blends. Springer International Publishing AG (2017) 68-100.
  • [35] Sumita M., Sakata K., Asai S., Miyasaka K., Nakagawa H., Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black. Polym. Bull. 25 (1991) 265-271.
  • [36] Namen F.M., Ferrandini E., Galan J.: Surface energy and wettability of polymers light-cured by two different systems. J. Appl. Oral Sci. 19 (2011) 517-520.
  • [37] Ono M., Nikaido T., Iked M., Imai S., Hanada N., Tagami J., Matin K.: Surface properties of resin composite materials relative to biofilm formation. Dent. Mater. J. 26 (2007) 613-622.
  • [38] Gyo M., Nikaido T., Okada K., Yamauchi J., Tagami J., Matin K.: Surface response of fluorine polymer-incorporated resin composites to cariogenic biofilm adherence. Appl. Environ. Microbiol. 74 (2008) 1428-1435.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu „Społeczna odpowiedzialność nauki” - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e2cf1452-73e0-4f7e-8c17-0b580adf125e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.