PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Mathematical modelling of thermal and flow processes in vertical ground heat exchangers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main task of mathematical modelling of thermal and flow processes in vertical ground heat exchanger (BHE-Borehole Heat Exchanger) is to determine the unit of borehole depth heat flux obtainable or transferred during the operation of the installation. This assignment is indirectly associated with finding the circulating fluid temperature flowing out from the U-tube at a given inlet temperature of fluid in respect to other operational parameters of the installation. The paper presents a model of thermal and flow processes in BHE consisting of two analytical models separately-handling processes occurring inside and outside of borehole. A quasi-three-dimensional model formulated by Zeng was used for modelling processes taking place inside the borehole and allowing to determine the temperature of the fluid in the U-tube along the axis of BHE. For modelling processes occurring outside the borehole a model that uses the theory of linear heat source was selected. The coupling parameters for the models are the temperature of the sealing material on the outer wall of the borehole and the average heat flow rate in BHE. Experimental verification of the proposed model was shown in relation to BHE cooperating with a heat pump in real conditions.
Rocznik
Strony
523--533
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
autor
  • Cracow University of Technology, Department of Chemical and Process Engineering, Warszawska 24, 31-155 Kraków, Poland
  • Cracow University of Technology, Department of Chemical and Process Engineering, Warszawska 24, 31 - 155 Kraków, Poland
Bibliografia
  • 1. Eskilson P., 1987. Thermal analysis of heat extraction boreholes. PhD thesis, University of Lund, Sweden.
  • 2. Fang Z., Diao N., Cui P., 2002. Discontinuous operation of geothermal heat exchangers. Tsinghua Sci. Technol., 7, 194-201.
  • 3. Fidorów N., Szulgowska-Zgrzywa M., 2015. The influence of the ground coupled heat pump's labor on the ground temperature in the boreholes – Study based on experimental data. Appl. Therm. Eng., 82, 237-245. DOI: 10.1016/j.applthermaleng.2015.02.035.
  • 4. Gu Y., O’Neal D. L., 1998. Development of an equivalent diameter expression for vertical U-Tubes used in ground-coupled heat pumps. ASHRAE Trans., 104, 347–55.
  • 5. Hellstrom G., 1991. Ground heat storage: Thermal analyses of duct storage systems. PhD thesis, University of Lund, Sweden.
  • 6. Ingersoll L.H., Plass H.J., 1948. Theory of the ground pipe heat source for the heat pump. ASHVE Trans., 47, 339–348.
  • 7. Koohi-Fayegh S., Rosen M., 2014. An analytical approach to evaluating the effect of thermal interaction of geothermal heat exchangers on ground heat pump efficiency. Energ. Convers. Manage., 78, 184-192. DOI: 10.1016/j.enconman.2013.09.064.
  • 8. Kozioł J., 2012. Przegląd uwarunkowań i metod oceny efektywności wykorzystania odnawialnych źródeł energii w budownictwie. Wydawnictwo Politechniki Śląskiej, Gliwice.
  • 9. Rees S., 2016. Advances in ground-source heat pump systems. Woodhead Publishing, Duxford.
  • 10. Salimshirazi A., 2012. Transient heat transfer in vertical ground heat exchanger. PhD thesis, Polytechnique Montreal, Canada.
  • 11. Śliwa T., Gonet A., 2005. Theoretical model of borehole heat exchanger. J. Energy Resour. Technol., 127, 142- 148. DOI:10.1115/1.1877515.
  • 12. Śliwa T., Gonet A., 2011. Analiza efektywności wymiany ciepła w wymiennikach otworowych o różnej konstrukcji. Wiertnictwo Nafta Gaz, 28, 555-570.
  • 13. Śliwa T., Gołaś A., Wołoszyn J., Gonet A. (2012). Numerical model of borehole heat exchanger in ANSYS CFX software. Arch. Min. Sci., 57, 375–390. DOI 10.2478/v10267-012-0024-3.
  • 14. Wołoszyn J., 2014. Badania wpływu rozmieszczenia wymienników na efektywność podziemnych magazynów energii. PhD thesis, AGH University of Science and Technology, Poland.
  • 15. Wiśniewska M., Forysiak J., 2014. Źródła ciepła niskotemperaturowego dostępnego dla gruntowych pionowych wymienników ciepła. Uwarunkowania środowiskowe i techniczne. Acta Universitatis Lodziensis, Folia Geographica Physica, 13, 65-77.
  • 16. Yang H., Cui P., Fang Z., 2010. Vertical-borehole ground-coupled heat pumps: A review of models and systems. Appl. Energy, 87, 16-27. DOI: 10.1016/j.apenergy.2009.04.038.
  • 17. Zeng H., Diao N., Fang Z., 2002. A finite line-source model for boreholes in geothermal heat exchangers. Heat Tran. Asian. Res., 31, 558-567. DOI: 10.1002/htj.10057.
  • 18. Zeng H., Diao N., Fang Z., 2003. Efficiency of vertical geothermal heat exchangers in the ground source heat pump system. J. Thermal Sci.. 12, 77-81. DOI: 10.1007/s11630-003-0012-1.
  • 19. Zhang C., Chen P., Liu Y., Sun S., Peng D., 2015. An improved evaluation method for thermal performance of borehole heat exchanger. Renew. Energy, 77, 142-151. DOI: 10.1016/j.renene.2014.12.015.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e2cef80a-fdf7-4d68-9931-ff0520b47269
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.