PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Ekonomiczny kompozyt cementowy EKC przygotowany z drobnego piasku kwarcowego i nominalnej ilości włókien PVA

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
An Economical Engineered Cementitious Composite (ECC) prepared with fine quarry sand and a nominal amount of PVA fibers
Języki publikacji
PL EN
Abstrakty
PL
Do produkcji konwencjonalnych kompozytów cementowych [KKC] zużywa się niewielką ilość drogiego, najdrobniejszego piasku kwarcowego [BDPK] o maksymalnej wielkości 250 μm, co negatywnie wpływa na skurcz przy wysychaniu, koszt i praktyczne zastosowanie KKC. W niniejszej pracy opracowano ekonomiczny kompozyt EKC. Wykorzystano zwykły piasek z piaskowni [PP], o niższym wskaźniku miałkości – WM = 2,2 i maksymalnej wielkości ziarna 2350 μm. Wielkość ziaren piasku z piaskowni była dziesięciokrotnie większa, a cena 30.-krotnie niższa niż BDPK. Doświadczalnie wykazano, że EKC, otrzymany z PP wykazuje zjawisko umocnienia odkształceniowego, z wieloma pęknięciami przed zniszczeniem. Sprawdzono również zachowanie się PP w różnych warunkach temperaturowych i stwierdzono niewielki spadek gęstości i wytrzymałości na ściskanie, do temperatury 200°C. Po przekroczeniu temperatury 200°C stwierdzono znaczny spadek wytrzymałości na ściskanie, spowodowany topnieniem włókien poliwinylowych PVA.
EN
The production of conventional engineered cementitious composites – ECC consumes low-volume and expensive ultrafine silica sand [UFSS] – maximum size 250 μm, which negatively affecting dry shrinkage, cost and practical application of ECC. This study develops an economical ECC featuring ordinary quarry sand [QS] with a lower fineness modulus – FM = 2.2 and a maximum particle size of 2350 μm. The quarry sand particle size was ten times greater, and the price was 30 times lower than UFSS. The experimental finding was shown that ECC prepared with QS exhibited the strain hardening phenomenon, with multiple cracks produced, before failure. The performance of QS was also checked under different temperature regimes, and a minor decrease in the mass density and compressive strength was observed, up to 200°C. After 200°C, a significant decrease in compressive strength was found, due to the melting of the PVA fibers.
Czasopismo
Rocznik
Strony
323--339
Opis fizyczny
Bibliogr. 50 poz., il., tab.
Twórcy
  • Department of Civil Engineering, University of Engineering & Technology, Peshawar, Pakistan
  • Department of Civil Engineering, University of Engineering & Technology, Peshawar, Pakistan
autor
  • Department of Civil Engineering, University of Engineering & Technology, Peshawar, Pakistan
  • Department of Civil Engineering, University of Engineering & Technology, Peshawar, Pakistan
Bibliografia
  • 1. Z.Q. Shi, D.D. Chung, Carbon fiber-reinforced concrete for traffic monitoring and weighing in motion. Cem. Concr. Res. 29(3), 435-9 (1999). https://doi.org/10.1016/S0008-8846(98)00204-X
  • 2. K. Yu, L. Li, J. Yu, J. Xiao, J. Ye, Y. Wang, Feasibility of using ultra-high ductility cementitious composites for concrete structures without steel rebar. Eng. Struct. 170, 11-20 (2018). https://doi.org/10.1016/j.engstruct.2018.05.037
  • 3. P.S. Song, J.C. Wu, S. Hwang, B.C. Sheu, Statistical analysis of impact strength and strength reliability of steel-polypropylene hybrid fiberreinforced concrete. Constr. Build. Mater. 19(1),1-9 (2005). https://doi.org/10.1016/j.conbuildmat.2004.05.002
  • 4. N. Banthia, M. Sappakittipakorn, Toughness enhancement in steel fiber reinforced concrete through fiber hybridization. Cem. Concr. Res. 37(9),1366-72 (2007). https://doi.org/10.1016/j.cemconres.2007.05.005
  • 5. B. Gencturk, F. Hosseini, Evaluation of reinforced concrete and reinforced engineered cementitious composite (ECC) members and structures using small-scale testing. Canad. J. Civ. Eng. 42(3),164-77 (2015). https://doi.org/10.1139/cjce-2013-0445
  • 6. X. Guan, Y. Li, T. Liu, C. Zhang, H. Li, J. Ou, An economical ultra-high ductile engineered cementitious composite with large amount of coarse river sand. Constr. Build. Mater. 201,461-72 (2019). https://doi.org/10.1016/j.conbuildmat.2018.12.207
  • 7. V.C. Li, Engineered cementitious composites (ECC)-tailored composites through micromechanical modeling.
  • 8. V.C. Li, S. Wang, C. Wu, Tensile strain-hardening behavior of polyvinyl alcohol engineered cementitious composite (PVA-ECC). Mater. J. 98(6),483-92 (2001).
  • 9. A. Demir, İ.B. Topçu, H. Kuşan, Modeling of some properties of the crushed tile concretes exposed to elevated temperatures. Constr. Build. Mater. 25(4),1883-9 (2011). https://doi.org/10.1016/j.conbuildmat.2010.11.071
  • 10. K.T. Soe, Y.X. Zhang, L.C. Zhang, Impact resistance of hybrid-fiber engineered cementitious composite panels. Comp. Struct. 104, 320-30 (2013). https://doi.org/10.1016/j.compstruct.2013.01.029
  • 11. J. Yu, J. Lin, Z. Zhang, V.C. Li, Mechanical performance of ECC with high-volume fly ash after sub-elevated temperatures. Constr Build Mater. 99, 82-9 (2015). http://dx.doi.org/10.1016/j.conbuildmat.2015.09.002
  • 12. V.C. Li, C.K.Y. Leung, SteadyState and Multiple Cracking of Short Random Fiber Composites. J Eng Mech. 118(11), 2246-64 (1992). https://doi.org/10.1061/(ASCE)0733-9399(1992)118:11(2246)
  • 13. M. Maalej, S.T. Quek, S.F. Ahmed, J. Zhang, V.W. Lin, K.S. Leong, Review of potential structural applications of hybrid fiber Engineered Cementitious Composites. Constr. Build. Mater. 36, 216-27 (2012). https://doi.org/10.1016/j.conbuildmat.2012.04.010
  • 14. M. Sahmaran, M. Lachemi, K.M. Hossain, R. Ranade, V.C. Li, Influence of aggregate type and size on ductility and mechanical properties of engineered cementitious composites. ACI Mater. J. 106(3), 308 (2009).
  • 15. V.C. Li, D.K. Mishra, H.C. Wu, Matrix design for pseudo-strain-hardening fibre reinforced cementitious composites. Mater. Struct. 28(10), 586-95 (1995). https://doi.org/10.1007/BF02473191
  • 16. V.C. Li, Integrated structures and materials design. Mater Struct Constr. 40(4), 387-96 (2007).
  • 17. M. Sahmaran, M. Li, V.C. Li, Transport properties of engineered cementitious composites under chloride exposure. ACI Mater. J. 104(6),604-11(2007).
  • 18. M. Sahmaran, H.E. Yücel, S. Demirhan, M.T. Arýk, V.C. Li, Combined effect of aggregate and mineral admixtures on tensile ductility of engineered cementitious composites. ACI Mater. J. 109(6):627 (2012).
  • 19. J. Li, E.H. Yang, Macroscopic and microstructural properties of engineered cementitious composites incorporating recycled concrete fines. Cem. Concr. Compos. 78,33-42 (2017). http://dx.doi.org/10.1016/j.cemconcomp.2016.12.013
  • 20. Z. Zhang, H. Ma, S. Qian, Investigation on properties of ECC incorporating crumb rubber of different sizes. J. Adv. Concr. Techn. 13(5), 241-51 (2015). https://doi.org/10.3151/jact.13.241
  • 21. K. Yu, Y. Wang, J. Yu, S.A. Xu, Strain-hardening cementitious composites with the tensile capacity up to 8%. Constr. Build. Mater. 137,410-9 (2017). http://dx.doi.org/10.1016/j.conbuildmat.2017.01.060
  • 22. M. Di Prisco, G. Plizzari, L. Vandewalle, Fibre reinforced concrete: new design perspectives. Mater. Struct. 42(9),1261-81 (2009). https://doi.org/10.1617/s11527-009-9529-4
  • 23. Q. Jin, V.C. Li, Structural and durability assessment of ECC/concrete dual-layer system for tall wind turbine towers. Eng Struct. 196, 109338 (2019). https://doi.org/10.1016/j.engstruct.2019.109338
  • 24. G. Fischer, H. Fukuyama, C.V. V, Effect of matrix ductility on the performance of reinforced ECC column members under reversed cyclic loading conditions. In: Proceedings of the JCI international Workshop on Ductile Fiber Reinforced Cementitious Composites (DFRCC)- Application and Evaluation. 269-78 (2002).
  • 25. D. Kim, A.E. Naaman, S. El-Tawil, Comparative flexural behavior of four fiber reinforced cementitious composites. Cem Concr Compos. 30(10), 917-28 (2008). http://dx.doi.org/10.1016/j.cemconcomp.2008.08.002
  • 26. T. Kanda, V.C. Li, Interface property and apparent strength of highstrength hydrophilic fiber in cement matrix. J. Mater. Civ. Eng. 10(1), 5-13 (1998). https://doi.org/10.1061/(ASCE)0899-1561(1998)10:1(5)
  • 27. G. Yıldırım, Ö.K. Keskin, S.B. Keskin, M. Şahmaran, M. Lachemi, A review of intrinsic self-healing capability of engineered cementitious composites: Recovery of transport and mechanical properties. Constr. Build. Mater. 101, 10-21 (2015). https://doi.org/10.1016/j.conbuildmat.2015.10.018
  • 28. B. Merchant, A. Gelot, Evaluation of engineering cementitious composites (ECC) with different percentage of fibers. Int J of Eng Res Technol. 4, 40-3 (2015).
  • 29. J. Choi, G. Zi, S. Hino, K. Yamaguchi, S. Kim, Influence of fiber reinforcement on strength and toughness of all-lightweight concrete. Constr Build Mater. 69, 381-9 (2014). http://dx.doi.org/10.1016/j.conbuildmat. 2014.07.074
  • 30. H.N. Atahan, B.Y. Pekmezci, E.Y. Tunce, Behavior of PVA fiber-reinforced cementitious composites under static and impact flexural effects. J. Mater. Civ. Eng. 25(10), 1438-45 (2013). https://doi.org/10.1061/(ASCE) MT.1943-5533.0000691
  • 31. A. Noushini, B. Samali, K. Vessalas, Effect of polyvinyl alcohol (PVA) fibre on dynamic and material properties of fibre reinforced concrete. Constr Build Mater. 49, 374-83 (2013). http://dx.doi.org/10.1016/j.conbuildmat.2013.08.035
  • 32. ASTM C136 / C136M - 19, Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates. ASTM Int West Conshohocken,USA. (2019)
  • 33. T. Horikoshi, A. Ogawa, T. Saito, H. Hoshiro, G. Fischer, V. Li, Properties of polyvinyl alcohol fiber as reinforcing materials for cementitious composites. In Proceedings of the International RILEM Workshop on High Performance Fiber Reinforced Cementitious Composites in Structural Applications 2006 (pp. 145-153).
  • 34. T. Kanda, V.C. Li, Practical design criteria for saturated pseudo strain hardening behavior in ECC. J. Adv. Concr. Techn. 4(1), 59-72 (2006). https://doi.org/10.3151/jact.4.59
  • 35. G. Yıldırım, M. Şahmaran, Ö. Anıl, Engineered cementitious composites-based concrete. Eco-Efficient Repair and Rehabilitation of Concrete Infrastructures. 387-427 (2018). https://doi.org/10.1016/B978-0-08-102181-1.00015-0
  • 36. ASTM C150/C150M - 19a, Standard specification for portland cement. ASTM Int West Conshohocken,USA. (2019)
  • 37. ASTM C618 - 19, Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use. ASTM Int West Conshohocken,USA. (2019)
  • 38. ASTM C128-15, Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate. ASTM Int West Conshohocken,USA. (2015)
  • 39. F. Hosseini, B. Gencturk, S.L. Pour, Seismic behavior of 3d ECC beamcolumn joints in special moment resisting framse. in: Eleventh US National Conference on Earthquake Engineering Integrating Science, Engineering & Policy, Los Angeles, California 2018 Jun 25 (pp. 25-29).
  • 40. V.R. Chethan, M. Ramegowda, H.E. Manohara, Engineered Cementitious Composites-a Review. Int Res J Eng Technol. 2(5),144-9 (2015).
  • 41. S. Wang, V.C. Li, Tailoring of pre-existing flaws in ECC matrix for saturated strain hardening. In: V.C. Li et al. (eds), Fracture Mechanics of Concrete Structures, 2004.
  • 42. S. Müller, V. Mechtcherine, Fatigue behaviour of strain-hardening cement-based composites (SHCC). Cem Concr Res. 92, 75-83 (2017). http://dx.doi.org/10.1016/j.cemconres.2016.11.003
  • 43. E. Özbay, O. Karahan, M. Lachemi, K.M. Hossain, C.D. Atis, Dual effectiveness of freezing–thawing and sulfate attack on high-volume slag-incorporated ECC. Composites B. 45(1), 1384-90 (2013). https://doi.org/10.1016/j.compositesb.2012.07.038
  • 44. M. da Silva Magalhães, R.D. Toledo Filho, E.D. Fairbairn, Thermal stability of PVA fiber strain hardening cement-based composites. Constr. Build. Mater. 94, 437-47 (2015). https://doi.org/10.1016/j.conbuildmat.2015.07.039
  • 45. M. Şahmaran, V.C. Li, Engineered Cementitious Composites. Transp Res Rec J Transp Res. Board. 2164:1-8 (2010). http://trrjournalonline.trb.org/doi/10.3141/2164-01
  • 46. L. Bai, J. Yu, M. Zhang, T. Zhou, Experimental study on the bond behavior between H-shaped steel and engineered cementitious composites. Constr Build Mater. 196, 214-32 (2019). https://doi.org/10.1016/j. conbuildmat.2018.11.117
  • 47. M.S. Mohammed, S.A. Mohamed, M.A. Johari, Influence of superplasticizer compatibility on the setting time, strength and stiffening characteristics of concrete. Adv. Appl. Sci. 1(2), 30 (2016). https://doi: 10.11648/j.aas.20160102.12
  • 48. ASTM C39/C39M-18, Compressive Strength of Cylindrical Concrete Specimens. ASTM Int West Conshohocken,USA. (2018)
  • 49. ASTM C496. ASTM C496 / C496M-17, Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, ASTM Int West Conshohocken,USA. (2017)
  • 50. H. Toutanji, B. Xu, J. Gilbert, T. Lavin, Properties of poly(vinyl alcohol) fiber reinforced high-performance organic aggregate cementitious material: converting brittle to plastic. Constr. Build. Mater. 24(1), 1-10 (2010). https://doi.org/10.1016/j.conbuildmat.2009.08.023
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e2cc1bbf-72ee-475f-8767-0aec49070d08
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.