PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Low-pressure ferritic nitrocarburizing: a review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The purpose of this article was to present in a concise and organized way the available knowledge about ferritic nitrocarburizing in low-pressure. The authors aimed to indicate the research gap, and the whole article is a starting point for further research. Design/methodology/approach: The research method was the analysis of available literature, patent database and industry notes from manufacturers of modern furnaces. Findings: The ferritic nitrocarburizing process has many advantages in line with the market demand and the lack of solutions. The article summarizes the knowledge in the field of the ferritic nitrocarburizing process as a systematization of knowledge and a starting point for further research. Research limitations/implications: The information described in the article requires further laboratory research. Practical implications: The information collected by the authors was the basis for developing the technology discussed in the LIDER/3/0025/L-12/20/NCBR/2021 project. Originality/value: Research on this type of treatment will enable the development of technology and will meet the expectations and needs of the industry. It will also provide benefits in the form of a better understanding of the processes and the determination of the relationship between the parameters and the properties of the obtained surface layers.
Rocznik
Strony
62--70
Opis fizyczny
Bibliogr. 69 poz.
Twórcy
  • Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Łódź, Poland
autor
  • Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Łódź, Poland
Bibliografia
  • [1] The Business Research Company, Metal Global Market Report 2022. Available from: https://www.thebusinessresearchcompany.com/report/ metal-global-market-report (Accessed: 15.12.2022)
  • [2] D.H. Herring, How to Justify Buying New Heat-Treat Equipment, Industrial Heating, 2019. Available from: https://www.industrialheating.com/articles/95093- how-to-justify-buying-new-heat-treat-equipment
  • [3] SECO/WARWICK, SECO/WARWICK significantly extends the productive life of precious metals supplier’s key piece of equipment, 2019. Available from: https://www.secowarwick.com/en/news/atmosphere-box-furnace-rebuild/ (Accessed: 08.11.2022)
  • [4] J. Prochazka, Z. Pokorny, J. Jasenak, J. Majerik, V. Neumann, Possibilities of the Utilization of Ferritic Nitrocarburizing on Case-Hardening Steels, Materials 14/13 (2021) 3714. DOI: https://doi.org/10.3390/ma14133714
  • [5] K. Berladir, M. Hatala, T. Hovorun, I. Pavlenko, V. Ivanov, F. Botko, O. Gusak, Impact of Nitrocarburizing on Hardening of Reciprocating Compressor’s Valves, Coatings 12/5 (2022) 574. DOI: https://doi.org/10.3390/coatings12050574
  • [6] A. Wells, Metallographic analysis of compound layers on ferritic nitrocarburized plain low carbon steel, Journal of Materials Science 20/7 (1985) 2439-2445. DOI: https://doi.org/10.1007/BF00556072
  • [7] M.A. Al-Sammarraie, K.A. Al-Saade, M.H.A. Al- Amery, Synthesis and Characterization of Benzothiazol Derivative as a Corrosion Inhibitor for Carbon Steel in Seawater, Materials Sciences and Applications 6/7 (2015) 681-693. DOI: http://dx.doi.org/10.4236/msa.2015.67070
  • [8] G. Song, A. Atrens, D. St. John, X. Wu, J. Nairn, The anodic dissolution of magnesium in chloride and sulphate solutions, Corrosion Science 39/10-11 (1997) 1981-2004. DOI: https://doi.org/10.1016/S0010- 938X(97)00090-5
  • [9] L.A. Dobrzański, Metal science and heat treatment of tool materials, WNT, Warsaw, 1990 (in Polish).
  • [10] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, Surface treatment of engineering materials, Open Access Library, Vol. 5, International OCSCO World Press, Gliwice, 2011 (in Polish).
  • [11] M. Urban, Effect of glow nitriding temperature on the microstructure and surface hardness of shaped reamers made of 455 steel, BEng Thesis, Warsaw University of Technology, Warsaw, 2011 (in Polish).
  • [12] E.J. Mittemeijer, A.B.P. Vogels, P.J. Van Der Schaaf, Morphology and lattice distortions of nitrided iron and iron-chromium alloys and steels, Journal of Materials Science 15/12 (1980) 3129-3140. DOI: https://doi.org/10.1007/BF00550386
  • [13] J. Michalski, E. Wołowiec-Korecka, A Study of Parameters of Nitriding Processes. Part 1, Metal Science and Heat Treatment 61/3-4 (2019) 183-190. DOI: https://doi.org/10.1007/s11041-019-00398-y
  • [14] J. Michalski, E. Wołowiec-Korecka, A Study of the Parameters of Nitriding Processes. Part 2, Metal Science and Heat Treatment 61/5-6 (2019) 351-359. DOI: https://doi.org/10.1007/s11041-019-00429-8
  • [15] P. Kochmański, Gas nitriding of precipitation-hardening stainless steels, Eksploatacja i Niezawodnosc – Maintenance and Reliability 2/18 (2003) 41-44 (in Polish).
  • [16] D. Nan, O. Northwood, R.J. Bowers, X. Sun, P. Bauerle, Residual stresses and dimensional changes in ferritic nitrocarburized navy C-rings and prototype stamped parts made from SAE 1010 steel, SAE International Journal of Materials and Manufacturing 2/1 (2009) 219-233. DOI: https://doi.org/10.4271/2009-01-0425
  • [17] S. Xiang, S. Jonsson, P. Hedström, B. Zhu, J. Odqvist, Influence of ferritic nitrocarburizing on the high-temperature corrosion-fatigue properties of the Si-Mo- Al cast iron SiMo1000, International Journal of Fatigue 143 (2021) 105984. DOI: https://doi.org/10.1016/j.ijfatigue.2020.105984
  • [18] A.D. Dobrzańska-Danikiewicz, E. Hajduczek, M. Polok-Rubiniec, M. Przybył, K. Adamaszek, Evaluation of selected steel thermochemical treatment technologies using foresight methods, Journal of Achievements in Materials and Manufacturing Engineering 46/2 (2011) 115-146.
  • [19] A.J. Kooi, M.A.J. Somers, R.H. Jutte, E.J. Mittemeijer, On the oxidation of α-Fe and ε-Fe2N1-z: II. Residual strains and blisters in the oxide layer, Oxidation of Metals 48/1-2 (1997) 111-128. DOI: https://doi.org/10.1007/BF01675264
  • [20] F. Cajner, D. Landek, E. Stupnišek Lisac, Improvement of properties of steels applying salt bath nitrocarburizing with post-oxidation, Materiali in Tehnologije 37/6 (2003) 333-339.
  • [21] J. Senatorski, J. Tacikowski, E. Roliński, S. Lampman, Tribology of Nitrided and Nitrocarburized Steels, in: G.E. Totten (ed), ASM Handbook vol. 18: Friction, Lubrication, and Wear Technology, ASM International, Materials Park, 2017, 638-652. DOI: https://doi.org/10.31399/asm.hb.v18.a0006355
  • [22] D. Pye, Practical Nitriding and Ferritic Nitro-carburizing, ASM International, Materials Park, 2003.
  • [23] Bluewater Thermal Solutions, Ferritic Nitrocarburizing (FNC). Available from: https://bluewaterthermal.com/ferritic-nitrocarburizing/ (Accessed: 17.11.2022)
  • [24] SECO/WARWICK, Nitriding - the first choice for the automotive industry, 2022.
  • [25] SECO/WARWICK, Modern, energy-saving and ecological gas nitriding process used in HRN/VRN type furnaces, 2022. Available from: https://www.secowarwick.com/en/products/atmospher e-heat-treatment-furnace-systems/zeroflow/ (Accessed: 17.11.2022)
  • [26] E. Wołowiec-Korecka, J. Michalski, B. Kucharska, A kinetic aspects of low-pressure nitriding process, Vacuum 155 (2018) 292-299. DOI: https://doi.org/10.1016/j.vacuum.2018.06.025
  • [27] Plasmanitriertechnik Dr. Böhm GmbH, Plasmanitrieren, Plasmanitrocarburieren and Oxidation (in German). Available from: https://plasmanitriertechnik.de/wp-content/pdf/wissen-kompakt.pdf (Accessed: 17.11.2022)
  • [28] S. Li, R.R. Manory, Comparison of compound layer nucleation mechanisms in plasma nitriding and nitrocarburizing: the effect of CHn species, Journal of Materials Science 34/5 (1999) 1045-1049. DOI: https://doi.org/10.1023/A:1004548112547
  • [29] M. Pérez, F.J. Belzunce, A comparative study of salt-bath nitrocarburizing and gas nitriding followed by post-oxidation used as surface treatments of H13 hot forging dies, Surface and Coatings Technology 305 (2016) 146-157. DOI: https://doi.org/10.1016/j.surfcoat.2016.08.003
  • [30] Bodycote, Fluidised bed/salt bath nitriding/nitro-carburising. Available form: https://www.bodycote.com/services/heat-treatment/case-hardening-without-subsequent-hardening-operation/fluidised-bedsalt-bath-nitridingnitrocarburising/ (Accessed: 17.11.2022)
  • [31] The Linde Group, Furnace atmospheres no. 3. Gas nitriding and nitrocarburising, 2018.
  • [32] J. Sun, Y. Luo, J. Ye, C. Li, J. Shi, Chromium Distribution, Leachability and Speciation in a Chrome Plating Site, Processes 10/1 (2022) 142. DOI: https://doi.org/10.3390/pr10010142
  • [33] Occupational Safety and Health Administration, Hexavalent Chromium, 2009.
  • [34] T. Bell, Y. Sun, A. Suhadi, Environmental and technical aspects of plasma nitrocarburizing, Vacuum 59/1 (2000) 14-23. DOI: https://doi.org/10.1016/S0042- 207X(00)00250-5
  • [35] M.A.J. Somers, Nitriding and nitrocarburizing: Status and future challenges, Proceedings of the Heat Treat and Surface Engineering Conference and Expo 2013, Chennai, India, 2013, 69-84.
  • [36] H. Du, M.A.J. Somers, J. Ågren, Microstructural and compositional evolution of compound layers during gaseous nitrocarburizing, Metallurgical and Materials Transactions A 31/1 (2000) 195-211. DOI: https://doi.org/10.1007/s11661-000-0065-7
  • [37] L. Sproge, J. Slycke, Control of the compound layer structure in gaseous nitrocarburizing, Journal of Heat Treating 9/2 (1992) 105-112. DOI: https://doi.org/10.1007/BF02833146
  • [38] A. Leineweber, T. Gressmann, E.J. Mittemeijer, Simultaneous control of the nitrogen and carbon activities during nitrocarburising of iron, Surface and Coatings Technology 206/11-12 (2012) 2780-2791. DOI: https://doi.org/10.1016/j.surfcoat.2011.11.035
  • [39] M. Knyazeva, M. Pohl, Duplex Steels. Part II: Carbides and Nitrides, Metallography, Microstructure, and Analysis 2/5 (2013) 343-351. DOI: https://doi.org/10.1007/s13632-013-0088-2
  • [40] J. Merlin, P. Merle, S. Garnier, M. Bouzekri, M. Soler, Experimental determination of the carbon solubility limits in ferritic steels, Metallurgical and Materials Transactions A 35/6 (2004) 1655-1661. DOI: https://doi.org/10.1007/s11661-004-0074-z
  • [41] J. Stein, R.E. Schacherl, M. Jung, S. Meka, B. Rheingans, E.J. Mittemeijer, Solubility of nitrogen in ferrite; The Fe-N phase diagram, International Journal of Materials Research 104/11 (2013) 1053-1065. DOI: https://doi.org/10.3139/146.110968
  • [42] M.A J. Somers, R.M. Lankreijer, E.J. Mittemeijer, R.M. Lankreijer, Excess nitrogen in the ferrite matrix of nitrided binary iron-based alloys, Philosophical Magazine A 59/2 (1989) 353-378. DOI: https://doi.org/10.1080/01418618908205064
  • [43] S.S. Hosmani, R.E. Schacherl, L. Lityńska- Dobrzyńska, E.J. Mittemeijer, The nitrogen-absorption isotherm for Fe-21.5 at. % Cr alloy: Dependence of excess nitrogen uptake on precipitation morphology, Philosophical Magazine 88/16 (2008) 2411-2426. DOI: https://doi.org/10.1080/14786430802345660
  • [44] T. Steiner, E.J. Mittemeijer, Alloying Element Nitride Development in Ferritic Fe-Based Materials Upon Nitriding: A Review, Journal of Materials Engineering and Performance 25/6 (2016) 2091-2102. DOI: https://doi.org/10.1007/s11665-016-2048-x
  • [45] M. Akhlaghi, S.R. Meka, E.A. Jägle, S.J.B. Kurz, E. Bischoff, E.J. Mittemeijer, Formation Mechanisms of Alloying Element Nitrides in Recrystallized and Deformed Ferritic Fe-Cr-Al Alloy, Metallurgical and Materials Transactions A 47/9 (2016) 4578-4593. DOI: https://doi.org/10.1007/s11661-016-3621-5
  • [46] HTS Heat Treating Society, ASM International, Chromium Nitride in Duplex Stainless Steels, Heat Treating Society, 2016. Available from: https://www.asminternational.org/web/hts/news/news wire/-/journal_content/56/10192/26792302/NEWS (Accessed: 25.11.2022)
  • [47] S. Kante, A. Leineweber, Interaction of N with White-solidified Cast Iron Model Alloys: The Effect of Mn and Cu on the Formation of Fe and Si Nitrides, Journal of Casting and Materials Engineering 5/4 (2021) 66-70. DOI: https://doi.org/10.7494/jcme.2021.5.4.66
  • [48] X. Bao, R.M. Metzger, M. Carbucicchio, Synthesis and properties of α″-Fe16N2 in magnetic particles, Journal of Applied Physics 75/10 (1994) 5870-5872. DOI: https://doi.org/10.1063/1.356988
  • [49] S.R. Meka, A. Schubert, E. Bischoff, E.J. Mittemeijer, Unusual Iron Nitride Formation Upon Nitriding Fe-Si Alloy, Metallurgical and Materials Transactions A 51/6 (2020) 3154-3166. DOI: https://doi.org/10.1007/s11661-020-05713-4
  • [50] D. Pye, Nitriding and Nitrocarburizing, in: Q.J. Wang, YW. Chung (eds), Encyclopedia of Tribology, Springer, Boston, 2421-2428. DOI: https://doi.org/10.1007/978-0-387-92897-5_1191
  • [51] D. Wu, Low-Temperature Gas-Phase Nitriding and Nitrocarburizing of 316L Austenitic Stainless Steel, Case Western Reserve University, 2013.
  • [52] H. Pedersen, T.L. Christiansen, M.A.J. Somers, Nitrocarburising in ammonia-hydrocarbon gas mixtures, HTM Journal of Heat Treatment and Materials 66/2 (2011) 76-81. DOI: https://doi.org/10.3139/105.110090
  • [53] E. Vyazmina, J. Sheng, S. Jallais, L. Bustamante- Valencia, P. Bruchet, F.P. Richard, Carbonitriding: Kinetic modeling of ammonia and acetylene decomposition at high temperature and low pressure, Matériaux and Techniques 106/1 (2018) 103. DOI: https://doi.org/10.1051/mattech/2018033
  • [54] K.J. Hüttinger, Fundamentals of chemical vapor deposition in hot wall reactors, in: P. Delhaes (ed), Fibers and Composites, First Edition, CRC Press, London, 2003, 75-85.
  • [55] M. Kryłów, J. Kwaśny, W. Balcerzak, Contamination of waters and bottom sediments with PAHs and their derivatives. Literature review, Chemical Industry 96/8 (2017) 1695-1698 (in Polish). DOI: https://doi.org/10.15199/62.2017.8.14
  • [56] A. Pohl, Polycyclic aromatic hydrocarbons - characteristics, occurrence and identification of sources of their origin in the environment, Laboratory - National Review 4 (2019) 10-14 (in Polish).
  • [57] M.S. Kubiak, Polycyclic Aromatic Hydrocarbons (PAHs) – their occurrence in the environment and food, Problems of Hygiene and Epidemiology 94/1 (2013) 31-36 (in Polish).
  • [58] E.J. Mittemeijer, Fundamentals of Nitriding and Nitrocarburizing, in: J.L. Dossett, G.E. Totten (eds), ASM Handbook vol. 4A: Steel Heat Treating Fundamentals and Processes, ASM International, Materials Park, 2018, 619-646. DOI: https://doi.org/10.31399/asm.hb.v04a.a0005818
  • [59] L. Sproge, J. Slycke, Kinetics of the gaseous nitro-carburising process, Surface Engineering 5/2 (1989) 125-140. DOI: https://doi.org/10.1179/sur.1989.5.2.125
  • [60] E.J. Mittemeijer, J.T. Slycke, Chemical potentials and activities of nitrogen and carbon imposed by gaseous nitriding and carburising atmospheres, Surface Engineering 12/2 (1996) 152-162. DOI: https://doi.org/10.1179/sur.1996.12.2.152
  • [61] P. Perrot, J. Foct, Gases other than hydrogen in iron and steels, Technical Engineer, 2003 (in French). Available from: https://www.techniques-ingenieur.fr/base-documentaire/materiaux-th11/methodes-de-caracterisation-et-d-analyse-des-metaux-et-alliages- 42532210/gaz-autres-que-l-hydrogene-dans-le-fer-et-les-aciers-m4275/ (Accessed: 07.12.2022)
  • [62] M. Bailyn, A Survey of Thermodynamics, American Institute of Physics, College Park, 1994.
  • [63] P.W. Atkins, The Elements of Physical Chemistry, Third Edition, Oxford University Press, Oxford, 2000.
  • [64] Y. Song, J.-H. Kim, K.-S. Kim, S. Kim, P. Song, Effect of C2H2/H2 Gas Mixture Ratio in Direct Low- Temperature Vacuum Carburization, Metals 8/7 (2018) 493. DOI: https://doi.org/10.3390/met8070493
  • [65] M. Lohrmann, W. Gräfen, A. Jurmann, K. Niederberger, Handling acetylene and its reaction products in AvaC low-pressure carburizing, HTM Journal of Heat Treatment and Materials 59/2 (2004) 113-118 (in German). DOI: https://doi.org/10.3139/105.100279
  • [66] W. Gräfen, B. Edenhofer, Acetylene Low-pressure Carburising - A Novel and Superior Carburising Technology, Heat Treatment of Metals 26/4 (1999) 79-83.
  • [67] A.E. Smirnov, M.Y. Semenov, A.S. Mokhova, G.S. Seval’nev, Use of Combined Methods of Successive Carburizing and Nitriding of Martensitic Steels in Low- Pressure Atmospheres, Metal Science and Heat Treatment 62/1-2 (2020) 127-132. DOI: https://doi.org/10.1007/s11041-020-00524-1
  • [68] A. Puth, L. Kusýn, A.V. Pipa, I. Burlacov, A. Dalke, S. Hamann, J.H. van Helden, H. Biermann, J. Röpcke, Spectroscopic study of plasma nitrocarburizing processes with an industrial-scale carbon active screen, Plasma Sources Science and Technology 29/3 (2020) 035001. DOI: https://doi.org/10.1088/1361-6595/ab6e58
  • [69] P. Cisquini, S.V. Ramos, P.R.P. Viana, V.D.F.C. Lins, A.R. Franco, E.A. Vieira, Effect of the roughness produced by plasma nitrocarburizing on corrosion resistance of AISI 304 austenitic stainless steel, Journal of Materials Research and Technology 8/2 (2019) 1897-1906. DOI: https://doi.org/10.1016/j.jmrt.2019.01.006
Uwagi
EN
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e2bd9156-9026-4949-b542-e8da7e475879
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.