Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In modern research on catalysts for NH3&enspsynthesis a lot of attention is paid to cobalt. In this work the new catalytic systems based on cobalt are presented. Unsupported cobalt catalysts singly promoted (La or Ba) and doubly promoted (La and Ba) were prepared and tested in NH3&enspsynthesis reaction under commercial synthesis conditions. Characterization studies revealed that lanthanum plays a role of a structural promoter, which improves the surface of catalyst precursors and prevents from sintering during calcination. However, lanthanum has a negative effect on the reduction of cobalt oxide, but the addition of barium promoter (Co/La/Ba catalyst) diminishes the negative impact of La. The co-promotion of cobalt with lanthanum and barium results in the increasing of the active phase surface and improvement of its activity in NH3&enspsynthesis.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
138--143
Opis fizyczny
Bibliogr. 30 poz., rys., wykr., wz.
Twórcy
autor
- Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warsaw, Poland
autor
- Institute of Physical Chemistry of the Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warsaw, Poland
Bibliografia
- 1. Hooper, C.W. (1991). Ammonia synthesis: commercial practice. In J.R. Jennings (Ed.), Catalytic ammonia synthesis: fundamentals and practice (253-283). New York, Plenum Press.
- 2. Schmidt-Szałowski, K., Szafran, M., Bobryk, E. & Sentek, J. (2013). Chemical technology. The inorganic industry. Warszawa, Wydaw. Nauk. PWN. [in Polish].
- 3. Hajduk, J. & Hajduk, M. (2000). One hundred years history of the creation and development of the synthetic ammonia production. Chemik 53(10), 288-291. [in Polish].
- 4. Mordecka, Z., Gołębiowski, A., Hennel, W. & Mordecki, S. (2004). Is a radical reduction of ammonia synthesis pressure advantageous? Przem. Chem. 83(1), 32-35. [in Polish].
- 5. Tennison, S.R. (1991). Alternative noniron catalysts. In J.R. Jennings (Ed.), Catalytic ammonia synthesis: fundamentals and practice (303-364). New York, Plenum Press.
- 6. Hagen, S., Barfod, R., Fehrmann, R., Jacobsen, C.J.H., Teunissen, H.T., Stahl, K. & Chorkendorff, I. (2002). New efficient catalyst for ammonia synthesis: barium-promoted cobalt on carbon. Chem. Commun. 11, 1206-1207. DOI: 10.1039/ B202781J.
- 7. Hagen, S., Barfod, R., Fehrmann, R., Jacobsen, C.J.H., Teunissen, H.T. & Chorkendorff, I. (2003). Ammonia synthesis with barium-promoted iron-cobalt alloys supported on carbon. J. Catal. 214(2), 327-335. DOI: 10.1016/S0021-9517(02)00182-3.
- 8. Jacobsen, C.J.H. (2000). Novel class of ammonia synthesis catalysts. Chem. Commun. 12, 1057-1058. DOI: 10.1039/ B002930K.
- 9. Kojima, R. & Aika, K. (2001). Cobalt molybdenum bimetallic nitride catalysts for ammonia synthesis: Part 1. Preparation and characterization. Appl. Catal. A 215(1-2), 149-160. DOI: 10.1016/S0926-860X(01)00529-4.
- 10. Kojima, R. & Aika, K. (2001). Cobalt molybdenum bimetallic nitride catalysts for ammonia synthesis: Part 2. Kinetic study. Appl. Catal. A 218(1-2), 121-128. DOI: 10.1016/ S0926-860X(01)00626-3.
- 11. Kojima, R. & Aika, K. (2001). Cobalt molybdenum bimetallic nitride catalysts for ammonia synthesis: Part 3. Reactant gas treatment. Appl. Catal. A 219(1), 157-170. DOI: 10.1016/ S0926-860X(01)00678-0.
- 12. Kaleńczuk, R. (1994). Effect of cobalt on the morphology and activity of fused iron catalyst for ammonia synthesis. Appl. Catal. A 112(2), 149-160. DOI: 10.1016/0926-860X(94)80216-5.
- 13. Kaleńczuk, R. (1995). The effect of cobalt on the reactants adsorption and activity of fused iron catalyst for ammonia synthesis. Catal. Lett. 33(3-4), 255-268. DOI:10.1007/BF00814229.
- 14. Kaleńczuk, R. (2000). Cobalt promoted fused iron catalyst for ammonia synthesis. Int. J. Inorg. Mater. 2(2-3), 233-239. DOI: 10.1016/S1466-6049(00)00009-X.
- 15. Moszyński, D., Jędrzejewski, R., Ziebro, J. & Arabczyk, W. (2010). Surface and catalytic properties of potassium-modified cobalt molybdenum catalysts for ammonia synthesis. Appl. Surf. Sci. 256(17), 5581-5584. DOI: 10.1016/j.apsusc.2009.12.150.
- 16. Raróg-Pilecka, W., Miśkiewicz, E., Matyszek, M., Kaszkur, Z., Kępiński, L. & Kowalczyk, Z. (2006). Carbon-supported cobalt catalyst for ammonia synthesis: Effect of preparation procedure. J. Catal. 237(1), 207-210. DOI: 10.1016/j. jcat.2005.10.029.
- 17. Raróg-Pilecka, W., Miśkiewicz, E., Kępiński, L., Kaszkur, Z., Kielar, K. & Kowalczyk, Z. (2006). Ammonia synthesis over barium-promoted cobalt catalysts supported on graphitised carbon. J. Catal. 249(1), 24-33. DOI: 10.1016/j.jcat.2007.03.023.
- 18. Raróg-Pilecka, W., Miśkiewicz, E. & Kowalczyk, Z. (2008). Activated carbon as a template for creating catalyst precursors. Unsupported cobalt catalyst for ammonia synthesis. Catal. Commun. 9(5), 870-873. DOI: 10.1016/j.catcom.2007.09.014.
- 19. Raróg-Pilecka, W., Karolewska, M., Truszkiewicz, E., Iwanek, E. & Mierzwa, B. (2011). Cobalt catalyst doped with cerium and barium obtained by co-precipitation method for ammonia synthesis process. Catal. Lett. 141(5), 678-684. DOI: 10.1007/s10562-011-0564-8.
- 20. Karolewska, M., Truszkiewicz, E., Mierzwa, B., Kępiński, L. & Raróg-Pilecka, W. (2012). Ammonia synthesis over cobalt catalysts doped with cerium and barium. Effect of the ceria loading. Appl. Catal. A 445-446, 280-286. DOI: 10.1016/j. apcata.2012.08.028.
- 21. Karolewska, M., Wójcik, P., Truszkiewicz, E., Narowski, R. & Raróg-Pilecka, W. (2012). Co-precipitation as an effective method for preparation of cobalt catalysts for ammonia synthesis. Przem. Chem. 91(11), 2142-2145. [in Polish].
- 22. Zybert, M., Truszkiewicz, E., Mierzwa, B. & Raróg-Pilecka, W. (2014). Thermal analysis coupled with mass spectrometry as a tool to determine the cobalt content in cobalt catalyst precursors obtained by co-precipitation. Therm. Acta 584, 31-35. DOI: 10.1016/j.tca.2014.03.026.
- 23. Reuel, R.C. & Bartholomew, C.H. (1984). The stoichiometries of H2 and CO adsorptions on cobalt: Effects of support and preparation. J. Catal. 85(1), 63-77. DOI: 10.1016/0021-9517(84)90110-6.
- 24. Borodziński, A. & Bonarowska, M. (1997). Relation between crystallite size and dispersion on supported metal catalysts. Langmuir 13(21), 5613-5620. DOI: 10.1021/la962103u.
- 25. Xue, L., Zhang, C.H., He, H. & Teraoka, Y. (2007). Catalytic decomposition of N2O over CeO2 promoted Co3O4 spinel catalyst, Appl. Catal. B 75(3-4), 167-174. DOI: 10.1016/j. apcatb.2007.04.013.
- 26. Wang, H., Ye, J.L., Liu, Y. & Qin, Y.N. (2007). Steam reforming of ethanol over Co3O4/CeO2 catalysts prepared by different methods, Catal. Today 129(3-4), 305-312. DOI: 10.1016/j.cattod.2006.10.012.
- 27. Sexton, B., Hughes, A. & Turney, T. (1986). An XPS and TPR study of the reduction of promoted cobalt-kieselguhr Fischer-Tropsch catalysts. J. Catal. 97(2), 390-406. DOI: 10.1016/0021-9517(86)90011-4.
- 28. Lin, S.S.Y., Kim, D.H. & Ha, S.Y. (2009). Metallic phases of cobalt-based catalysts in ethanol steam reforming: The effect of cerium oxide. Appl. Catal. A 355(1-2), 69-77. DOI: 10.1016/j.apcata.2008.11.032.
- 29. Kang, M., Song, M.W. & Lee, C.H. (2003). Catalytic carbon monoxide oxidation over CoOx/CeO2 composite catalysts. Appl. Catal. A 251(1), 143-156. DOI: 10.1016/S0926- -860X(03)00324-7.
- 30. Lendzion-Bieluń, Z., Jędrzejewski, R. & Arabczyk, W. (2011). The effect of aluminium oxide on the reduction of cobalt oxide and thermostabillity of cobalt and cobalt oxide. Centr. Eur. J. Chem. 9(5), 834-839. DOI: 10.2478/s11532-011-0059-x.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e2bbf111-ae01-4958-aca0-3086c2619572