PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A classification framework for prediction of breast density using an ensemble of neural network classifiers

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present work proposes a classification framework for the prediction of breast density using an ensemble of neural network classifiers. Expert radiologists, visualize the textural characteristics of center region of a breast to distinguish between different breast density classes. Accordingly, ROIs of fixed size are cropped from the center location of the breast tissue and GLCM mean features are computed for each ROI by varying interpixel distance 'd' from 1 to 15. The proposed classification framework consists of two stages, (a) first stage: this stage consists of a single 4-class neural network classifier NN0 (B-I/B-II/B-III/B-IV) which yields the output probability vector [PB-I PB-II PB-III PB-IV] indicating the probability values with which a test ROI belongs to a particular breast density class. (b) second stage: this stage consists of an ensemble of six binary neural network classifiers NN1 (B-I/B-II), NN2 (B-I/B-III), NN3 (B-I/B-IV), NN4 (B-II/B-III), NN5 (B-II/B-IV) and NN6 (B-III/B-IV). The output of the first stage of the classification framework, i.e. output on NN0 is used to obtain the two most probable classes for a test ROI. In the second stage this test ROI is passed through one of the binary neural networks, i.e. NN1 to NN6 corresponding to the two most probable classes predicted by NN0. [...]
Twórcy
autor
  • Department of Computer Science and Engineering, G B Pant Engineering College, Pauri Garhwal, Uttarakhand 246194, India
  • Department of Computer Science and Engineering, G B Pant Engineering College, Pauri Garhwal, Uttarakhand 246194, India
autor
  • CSIR-Central Scientific Instruments Organization, Chandigarh, India
autor
  • Department of Radiology, IGMC, Shimla, Himachal Pradesh, India
Bibliografia
  • [1] Parkin DM, Fernandez LM. Use of statistics to assess the global burden of breast cancer. Breast 2006;12:70–80.
  • [2] Boyd NF, Martin L, Chavez S, Gunasekara A, Salleh A, Bronskill M. Breast-tissue composition and other risk factors for breast cancer in young women: a cross-sectional study. Lancet Oncol 2009;10:569–80.
  • [3] Colin C, Prince V, Valette PJ. Can mammographic assessments lead to consider density as a risk factor for breast cancer? Eur J Radiol 2013;82:404–11.
  • [4] Ekpo EU, Ujong UP, Mello-Thoms C, McEntee MF. Assessment of interradiologist agreement regarding mammographic breast density classification using the fifth edition of the BI-RADS atlas. Am J Roentgenol 2016;206:1119–23.
  • [5] Eng A, Gallant Z, Shepherd J, McCormack V, Li J, Dowsett M, et al. Digital mammographic density and breast cancer risk: a case–control study of six alternative density assessment methods. Breast Cancer Res 2014;16:439–51.
  • [6] Boyd NF, Martin LJ, Yaffe MJ, Minkin S. Mammographic density and breast cancer risk: current understanding and future prospects. Breast Cancer Res 2011;13:223–34.
  • [7] Vachon CM, Van-Gils CH, Sellers TA, Ghosh K, Pruthi S, Brandt KR, et al. Mammographic density, breast cancer risk and risk prediction. Breast Cancer Res 2007;9:1–9.
  • [8] Boyd NF, Guo H, Martin LJ, Sun L, Stone J, Fishell E, et al. Mammographic density and the risk and detection of breast cancer. N Engl J Med 2007;356:227–36.
  • [9] Maskarinec M, Pagano I, Lurie G, Wilkens LR, Kolonel L. Mammographic density and breast cancer risk the multiethnic cohort study. Am J Epidemiol 2005;162:743–52.
  • [10] Pinsky RW, Helvie MA. Mammographic breast density: effect on imaging and breast cancer risk. J Natl Compr Canc Netw 2010;8:1157–65.
  • [11] McCormack VA, Silva ID. Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidem Biomar 2006;15:1159–69.
  • [12] Wolfe JN. Risk for breast cancer development determined by mammographic parenchymal pattern. Cancer 1976;37:2486–92.
  • [13] Wolfe JN. Breast patterns as an index of risk for developing breast cancer. Am J Roentgenol 1976;126:1130–7.
  • [14] Boyd NF, Rommens JM, Vogt K, Lee v, Hopper J, Yaffe MJ, et al. Mammographic breast density as an intermediate phenotype for breast cancer. Lancet Oncol 2005;6(10):798–808.
  • [15] Warren R. Hormones and mammographic breast density. Maturitas 2004;49:67–78.
  • [16] Boyd NF, Lockwood GA, Byng JW, Tritchler DL, Yaffe MJ. Mammographic densities and breast cancer risk. Cancer Epidem Biomar 2008;7:1133–44.
  • [17] Ganesan K, Acharya U, Chua CK, Min LC, Abraham KT, Ng KB. Computer-aided breast cancer detection using mammograms: a review. IEEE Rev Biomed Eng 2013;6:77–98.
  • [18] Kumar I, Virmani J, Bhadauria HS. A review of breast density classification methods. Proceeding of 2nd International Conference on Computing for Sustainable Global Development 'INDIACom – 2015; 2015.
  • [19] Zhang G, Wang W, Moon J, Pack JK, Jean S. A review of breast tissue classification in mammograms. Proceedings of ACM Symposium on Research in Applied Computation; 2011.
  • [20] Abdel-Gawad EA, Khalil OA, Ragaee SM. Assessment of breast lesions using BI-RADS US lexicon in mammographically dense breasts (ACR categories 3 and 4) with histopathological correlation. Egypt J Radiol Nucl Med 2014;45:1301–7.
  • [21] Tagliafico A, Tagliafico G, Tosto S, Chiesa F, Martinoli C, Derchi LE, et al. Mammographic density estimation: comparison among BI-RADS categories, a semi-automated software and a fully automated one. Breast 2009;18:35–40.
  • [22] John M, Karen K, Carol S, Seibert J. A breast density index for digital mammograms based on radiologists ranking. J Digit Imaging 1998;2:101–15.
  • [23] Pereira R, Marques PM, Honda OM, Kinoshita SK, Engelmann R, Muramatsu C, et al. Usefulness of texture analysis for computerized classification of breast lesions on mammograms. J Digit Imaging 2007;20:248–55.
  • [24] Oliver A, Tortajada M, Llado X, Freixenet J, Ganau S, Tortajada L, et al. Breast density analysis using an automatic density segmentation algorithm. J Digit Imaging 2015;28:604–12.
  • [25] Papaevangelou A, Chatzistergos S, Nikita KS, Zografos G. Breast density: computerized analysis on digitized mammograms. Hellenic J Surg 2011;83:133–8.
  • [26] Heine J, Carton MJ, Scott CG. An automated approach for estimation of breast density. Cancer Epidem Biomar 2008;17:3090–7.
  • [27] Huo Z, Giger ML, Vyborny CJ. Computerized analysis of multiple-mammographic views: potential usefulness of special view mammograms in computer-aided diagnosis. IEEE T Med Imaging 2001;20(12):1285–92.
  • [28] Yaghjyan L, Pinney S, Mahoney M, Morton A, Buckholz J. Mammographic breast density assessment: a methods study. Atlas J Med Biol Sci 2011;1:8–14.
  • [29] Karssemeijer N. Automated classification of parenchymal patterns in mammograms. Phys Med Biol 1998;43:365–9.
  • [30] Bovis K, Singh S. Classification of mammographic breast density using a combined classifier paradigm. 4th International Workshop on Digital Mammography. 2002. pp. 177–80.
  • [31] Oliver A, Freixenet J, Zwiggelaar R. Automatic classification of breast density. Proceedings of the IEEE International Conference on Image Processing 'ICIP 2005' Genova 2005; 2005.
  • [32] Bosch A, Munoz X, Oliver A, Marti J. Modeling and classifying breast tissue density in mammograms. Proceeding of Computer Vision and Pattern Recognition; 2006.
  • [33] Oliver A, Freixenet J, Marti R, Pont j, Perez E, Denton ER, et al. A novel breast tissue density classification methodology. IEEE T Inf Technol B 2008;12:55–65.
  • [34] Liu Q, Liu L, Tan Y, Wang J, Ma X, Ni X. Mammogram density estimation using sub-region classification. Proceeding of 4th International Conference on Biomedical Engineering and Informatics; 2011.
  • [35] Qu Y, Shang C, Wu W, Shen Q. Evolutionary fuzzy extreme learning machine for mammographic risk analysis. Int J Fuzzy Systems 2011;13:282–91.
  • [36] Chen Z, Denton E, Zwiggelaar R. Local feature based mammographic tissue pattern modeling and breast density classification. Proceeding of 4th International Conference on Biomedical Engineering and Informatics; 2011.
  • [37] Mustra M, Grgic M, Delac K. Breast density classification using multiple feature selection. Automatika: J Contr Measurement Electron Comput Commun 2012;53:362–72.
  • [38] Masmoudi AD, Ayed NGB, Masmoudi DS, Abid A. LBPV descriptors-based automatic ACR/BIRADS classification approach. J Image Video Process 2013;1(1):1–9.
  • [39] Kumar I, Virmani J, Bhadauria HS. Wavelet packet texture descriptors based four-class BIRADS breast tissue density classification. Procedia Comput Sci 2015;70:76–84.
  • [40] Miller P, Astley S. Classification of breast tissue by texture analysis. Proceeding of BMVC91; 1991.
  • [41] Jamal N, Ng NH, Ranganathan S, Tan LK. Comparison of computerized assessment of breast density with subjective BI-RADS classification and Tabar's pattern from two-view CR mammography. Proceeding of World Congress on Medical Physics and Biomedical Engineering; 2006.
  • [42] He W, Harvey S, Juette A, Denton A, Zwiggelaar R. Mammographic segmentation and density classification: a fractal inspired approach. Proceeding of International Workshop on Digital Mammography; 2016.
  • [43] Li H, Giger ML, Huo Z, Olopade OI, Lan L, Weber BL, et al. Computerized analysis of mammographic parenchymal patterns for assessing breast cancer risk: effect of ROI size and location. Med Phys 2004;31:549–55.
  • [44] Heath M, Bowyer K, Kopans D, Moore R, Kegelmeyer WP. The digital database for screening mammography. Proceedings of the 5th International Workshop on Digital Mammography; 2000.
  • [45] Haralick RM, Shanmugam K, Dinstein JH. Textural features for image classification. IEEE T Syst Man Cyb 1973;6:610–21.
  • [46] Li H, Giger ML, Olopade OI, Margolis A, Lan L, Chinander MR. Computerized texture analysis of mammographic parenchymal patterns of digitized mammograms. Acad Radiol 2005;12:863–73.
  • [47] Tourassi GD. Journey toward computer-aided diagnosis: role of image texture analysis. Radiology 1999;213:317–20.
  • [48] Mudigonda NR, Rangayyan RM, Desautels JL. Gradient and texture analysis for the classification of mammographic masses. IEEE T Med Imaging 2000;19:1032–43.
  • [49] Mudigonda NR, Rangayyan RM, Desautels JL. Detection of breast masses in mammograms by density slicing and texture flow-field analysis. IEEE T Med Imaging 2001;20:1215–27.
  • [50] Vasantha M, Bharathi VS, Dhamodharan R. Medical image feature extraction, selection and classification. Int J Eng Sci Tech 2010;2:2071–6.
  • [51] Mohanaiah P, Sathyanarayana P, Kumar LG. Image texture feature extraction using GLCM approach. IJSR 2013;3:862–6.
  • [52] Castellano G, Bonilha L, Li LM, Cendes F. Texture analysis of medical images. Clin Radiol 2004;5:1061–9.
  • [53] Amadasun M, King R. Textural features corresponding to textural properties. IEEE T Syst Man Cyb 1989;19:1264–74.
  • [54] Weszka JS, Dyer CR, Rosenfeld A. A comparative study of texture measures for terrain classification. IEEE T Syst Man Cyb 1976;4:269–85.
  • [55] Kim JK, Park HW. Statistical textural features for detection of microcalcifications in digitized mammograms. IEEE T Med Imaging 1999;18:231–8.
  • [56] Mougiakakou SG, Valavanis IK, Nikita A, Nikita KS. Differential diagnosis of CT focal liver lesions using texture features, feature selection and ensemble driven classifiers. Artif Intell Med 2007;41(1):25–37.
  • [57] Virmani J, Kumar V, Kalra N, Khandelwal N. Prediction of cirrhosis based on singular value decomposition of gray level co-occurrence matrix and an neural network classifier. Proceedings of the IEEE International Conference on Developments in E-systems Engineering, Dubai (DeSe); 2011.
  • [58] Lee WL, Hsieh KS, Chen YC. A study of ultrasonic liver images classification with artificial neural networks based on fractal geometry and multiresolution analysis. Biomed Eng-App Bas 2004;16:59–67.
  • [59] Andre TC, Rangayyan RM. Classification of breast masses in mammograms using neural networks with shape, edge sharpness, and texture features. J Electron Imaging 2006;15:013019–29.
  • [60] Wuy, Giger ML, Doi K, Vyborny CJ, Schmidt RA, Metz CE. Artificial neural networks in mammography: application to decision making in the diagnosis of breast cancer. Radiology 1993;187:81–7.
  • [61] Virmani J, Kumar V, Kalra N, Khandelwal N. Neural network ensemble based CAD system for focal liver lesions from B-mode ultrasound. J Digit Imaging 2014;27(4):520–37.
  • [62] Sujana H, Swarnamani S, Suresh S. Application of artificial neural networks for the classification of liver lesions by image texture parameters. Ultrasound Med Biol 1996;22:1177–81.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e2b26bc0-d079-4e4b-8e3c-75eea00ddf29
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.