PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Unconfined compressive strength of Lower Paleozoic shales from the Baltic Basin (northern Poland)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Unconfined compressive strength (UCS) is one of the crucial parameters for geomechanical modelling of unconventional reservoirs useful for the design of hydraulic stimulation of hydrocarbon production. In spite of a large amount of UCS data collected from the Lower Silurian and Ordovician shale successions of the Baltic Basin (northern Poland), no comprehensive study on this subject has been published so far. Here, we compile the results of 247 single-stage confined compressive strength tests (CCST) provided by our industrial partner from four exploration boreholes. Based on the integration of these results with geophysical logging data, including dipole sonic logs, we derive empirical equations describing the relationship between UCS and Young’s modulus or sonic wave slowness. Considering the strong anisotropy of elastic properties in shales we have introduced different empirical equations for UCSv (vertical) and UCSh (horizontal), respectively perpendicular and parallel to bedding. The formula for UCSh is determined with less accuracy than for UCSv due to scarce laboratory tests with bed-parallel loading. Based on the empirical formula proposed, we have estimated the VTI-type of anisotropy to be in the range of 12-27%, depending on the lithostratigraphic formation. The results of our UCS estimations are compared with the results of multi-stage CCST from the adjacent borehole. Both confined tests yielded similar results for UCSv, with slightly higher values obtained from the multi-stage tests. In turn, a comparison of our solution with the results of true uniaxial compressive strength tests (UCST) for vertical samples from one of the studied boreholes revealed a significant discrepancy. The mean UCS results for shale formations from UCST are several times lower than those evaluated from the single-stage CCST. The usefulness of the results obtained for borehole breakout analysis is discussed.
Rocznik
Strony
art. no. 33
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr.
Twórcy
  • Wellfield Geoscience, Grzegórzecka 67C/102, 31-559 Kraków, Poland
  • Polish Geological Institute – National Research Institute, Rakowiecka 4, 00-975 Warszawa, Poland
  • Polish Geological Institute – National Research Institute, Rakowiecka 4, 00-975 Warszawa, Poland
Bibliografia
  • 1. Bonnelye, A., Schubnel, A., David, C., Henry, P., Guglielmi, Y., Gout, C., Fauchille, A.L., Dick, P., 2016. Strength anisotropy of shales deformed under uppermost crustal conditions. Journal of Geophysical Research: Solid Earth, 122: 110-129.
  • 2. Chang, C., Zoback, M.D., Khaksar, A., 2006. Empirical relations between rock strength and physical properties in sedimentary rocks. Journal of Petroleum Science and Engineering, 51: 223-237.
  • 3. Crawford, B.R., Gaillot, P.J., Alramahi, B., 2010. Petrophysical methodology for predicting compressive strength in siliciclastic “sandstone-to-shale” rocks. ARMA 65th U.S.-Canada Rock Mechanics Symposium, Salt Lake City, USA, 10-19: 27-30.
  • 4. Crawford, B.R., DeDontney, N.L., Alramahi, B., Ottesen, S., 2012. Shear strength anisotropy in fine-grained rocks. ARMA 46th US Rock Mechanics/Geomechanics Symposium Chicago, USA: 12-290.
  • 5. Gazaniol, D., Forsans, T., Boisson, M.J.F., Piau, J.-M., 1995. Wellbore failure mechanisms in shales: prediction and prevention. Journal of Petroleum Technology, July 1995: 589-595.
  • 6. Guo, Z., Li, X-Y., Liu, C., 2014. Anisotropy parameters estimate and rock physics analysis for the Barnett Shale. Journal of Geophysics and Engineering, 11: 065006.
  • 7. Handwerger, A.D., Rivera, R.S., Keller, J., Vaughn, K., 2011. Improved petrophysical core measurements on tight shale reservoirs using retort and crushed samples. Proceedings of SPE Annual Technical Conference and Exhibition, Denver, USA.
  • 8. Horsrud, P., 2001. Estimating Mechanical Properties of Shale from Empirical correlations. SPE Drilling and Completion: 68-73.
  • 9. Huffman, K.A., Saffer, D.M., Dugan, B., 2016. In situ stress magnitude and rock strength in the Nankai accretionary complex: a novel approach using paired constraints from downhole data in two wells. Earth, Planets and Space, 68: Article no. 123.
  • 10. ISRM, 1983. Suggested methods for determining the strength of rock materials in triaxial compression: revised version. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 20: 285-290.
  • 11. Jaeger, J.C., Cook, N.G., 1979. Fundamentals of Rock Mechanics. 3rd edition. Chapman and Hall, London.
  • 12. Josh, M., Esteban, L., Piane, C.D., Sarout, J., Dewhurst, D.N., Clennell, M.B., 2012. Laboratory characterization of shale properties. Journal of Petroleum Science and Engineering, 88-89: 107-124.
  • 13. Khaksar, A., Taylor, P.G., Fang, Z., Kayes, T., Salazar, A., Rahman, K., 2009. Rock Strength from Core and Logs: Where We Stand and Ways to Go. SPE 121972.
  • 14. King, L.V., 1912. Limiting strength of rocks under conditions of stress existing in the earth's interior. The Journal of Geology, 20: 119-138.
  • 15. Kohli, A.H., Zoback, M.D., 2013. Frictional properties of shale reservoir rocks. Journal of Geophysical Research: Solid Earth, 118: 5109-5125.
  • 16. Kovari, K., Tisa, A., Einstein, H.H., Franklin, J.A., 1983. Suggested methods for determining the strength of rock materials in triaxial compression: revised version. International Journal of Rock Mechanics and Mining Sciences, 206: 285-290.
  • 17. Mavko, G., Mukerji, T., Dvorkin, J., 2009. The Rock Physics Handbook: Tools for Seismic Analysis of Porous Media. 2nd Edition. Cambridge University Press.
  • 18. Mazur, S., Mikołajczak, M., Krzywiec, P., Malinowski, M., Buffenmyer, V., Lewandowski, M., 2015. Is the Teisseyre-Tornquist Zone an ancient plate boundary of Baltica? Tectonics, 34: 2465-2477.
  • 19. Pachytel, R., Jarosiński, M., Bobek, K., 2017. Geomechanical stratification in a shale reservoir and its correlation with natural fractures: case from Pomeranian Basin (Poland). American Rock Mechanics Association Publications, Proceedings of 51st U.S. Rock Mechanics/Geomechanics Symposium: 17-77.
  • 20. Poprawa, P., 2019. Geological setting and Ediacaran-Palaeozoic evolution of the western slope of the East European Craton and adjacent regions. Annales Societatis Geologorum Poloniae, 89: 347-380.
  • 21. Poprawa, P., Šliaupa, S., Stephenson, R., Lazauskiene, J., 1999. Late Vendian-Early Palaeozoic tectonic evolution of the Baltic Basin: regional tectonic implications from subsidence analysis. Tectonophysics, 314: 219-239.
  • 22. Robertson, E.C., 1955. Experimental study of the strength of rocks. GSA Bulletin, 66: 1275-1314.
  • 23. Sone, H., Zoback, M.D., 2013a. Mechanical properties of shale-gas reservoir rocks part 2: static and dynamic elastic properties and anisotropy. Geophysics, 78: 381-392.
  • 24. Sone, H., Zoback, M.D., 2013b. Mechanical properties of shale-gas reservoir rocks part 2: ductile creep, brittle strength, and their relation to the elastic modulus. Geophysics, 78: 393-402.
  • 25. Suárez-Rivera, R., Ostroff, G., Tan, K., Begnaud, B., Martin, W., Bermudez, T., 2003. Continuous rock strength measurements on core and neural network modelling result in significant improvements in log based rock strength predictions used to optimize completion design and improve prediction of sanding potential and wellbore stability. SPE 84558.
  • 26. Taylor, P.G., Appleby, R.R., 2006. Integrating quantitative and qualitative rock strength data in sanding prediction studies: an application of the Schmidt hammer method. SPE/IADC 101968.
  • 27. Wilczyński, P.M., Domonik, A., Łukaszewski, P., 2021. Anisotropy of strength and elastic properties of Lower Paleozoic shales from the Baltic Basin, Poland, Energies, 14: 2995.
  • 28. Wojtowicz, M., Jarosiński, M., 2019. Reconstructing the mechanical parameters of a transversely-isotropic rock based on log and incomplete core data integration. International Journal of Rock Mechanics and Mining Sciences, 115: 111-120.
  • 29. Youna, H., Tonon, F., 2010. Multi-stage triaxial test on brittle rock. International. Journal of Rock Mechanics and Mining Sciences, 47: 678-684.
  • 30. Zoback, M.D., 2010. Reservoir Geomechanics. Cambridge University Press.
  • 31. Zoback, M.D., 2019. Unconventional Reservoir Geomechanics. Cambridge University Press.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e2b1c2e6-7bed-4970-8256-a9d142affee1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.