PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Morphology and surface topography of Ti6Al4V lattice structure fabricated by selective laser sintering

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Construction of metallic implants with a porous structure that mimics the biomechanical properties of bone is one of the challenges of orthopedic regenerative medicine. The selective laser sintering technique (SLS) allows the production of complex geometries based on three-dimensional model, which offers the prospect of preparing porous metal implants, in which stiffness and porosity can be precisely adjusted to the individual needs of the patient. This requires an interdisciplinary approach to design, manufacturing and testing of porous structures manufactured by selective sintering. An important link in this process is the ability to assess the surface topography of the struts of porous structure. The paper presents a qualitative assessment of the surface morphology based on SEM studies and methodology that allows for quantitative assessment of stereometric structure based on micro-tomographic measurements.
Rocznik
Strony
85--92
Opis fizyczny
Bibliogr. 20 poz., tab., rys.
Twórcy
  • University of Silesia, Institute of Materials Science, ul. 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
autor
  • Institute of Advanced Manufacturing Technology, ul. Wrocławska 37A, 30-011 Kraków, Poland
autor
  • Poznań University of Technology, Institute of Mechanical Technology ul. Piotrowo 3, 60-965 Poznań, Poland
autor
  • Institute of Advanced Manufacturing Technology, ul. Wrocławska 37A, 30-011 Kraków, Poland
autor
  • University of Silesia, Institute of Materials Science, ul. 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
Bibliografia
  • [1] D.M. Brunette, P. Tengvall, M. Textor, P. Thomsen, Titanium in Medicine, Springer-Verlag, Berlin Heidelberg, 2001.
  • [2] D. R. Sumner, “Long-term implant fixation and stress-shielding in total hip replacement”, Journal of Biomechanics 48(5), 797‒800 (2015).
  • [3] P. A. Revell, Joint Replacement Technology, Woodhead Publishing in Materials, Cambridge, UK, 2008.
  • [4] S. Sobieszczyk, The Development of Bioactive Porous Implants in Titanium Matrix, Publ. House Gdańsk Univ. Techn., Gdańsk, 2013.
  • [5] S. J Hollister, R. D. Maddox, J. M. Taboas, “Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints”, Biomaterials 23(20), 4095‒4103 (2002).
  • [6] T. Naoya, F. Shunsuke, T. Mitsuru, S. Kiyoyuki, O. Bungo, N. Takashi, M. Tomiharu, “Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: An in vivo experiment”, Materials Science and Engineering C: Materials for Biological Applications 59, 690‒701 (2016).
  • [7] G. Ryan, A. Pandit, D. P. Apatsidis, “Fabrication methods of porous metals for use in orthopaedic applications”, Biomaterials 27 (13), 2651‒2670 (2006).
  • [8] N. Jha, D. P. Mondal, J. D. Majumdar, A. Badkul, A. Jha, A. K. Khare, “Highly porous open cell Ti-foam using NaCl as temporary space holder through powder metallurgy route”, Materials & Design 47, 810‒819 (2013).
  • [9] D. C. Dunand, “Processing of titanium foams”, Advanced Engineering Materials 6 (6), 369‒376 (2004).
  • [10] Y. Chino, D. C. Dunand, “Directionally freeze-cast titanium foam with aligned, elongated pores”, Acta Materialia 56(1), 105‒113 (2008).
  • [11] J. P. Li, S. H. Li, C. A. Van Blitterswijk, K. De Groot, “A novel porous Ti6Al4V: characterization and cell attachment”, Journal of Biomedical Materials Research Part A 73(2), 223‒233 (2005).
  • [12] M. Wieczorowski, Surface Roughness Metrology, ZAPOL, Szczecin, 2013.
  • [13] M. Wieczorowski, Surface Topography Analysis, Publ. House Poznan Univ. Techn., Poznan, 2009.
  • [14] Krolczyk G., Raos P., Legutko S. Experimental analysis of surface roughness and surface texture of machined and fused deposition modelled parts, Tehnički Vjesnik - Technical Gazette 21 (1), 217 - 221 (2014).
  • [15] G. Kerckhofs, G. Pyka, M. Moesen, S. Van Bael, J. Schrooten, M. Wevers, “High‐resolution microfocus X‐ray computed tomography for 3D surface roughness measurements of additive manufactured porous materials”, Advanced Engineering Materials 15(3), 153‒158 (2013).
  • [16] J. Krolczyk, B. Gapinski, G. Krolczyk, I. Samardzic, R. Maruda, K. Soucek, S. Legutko, P. Nieslony, Y. Javadi, L. Stas “Topographic inspection as a method of weld joint diagnostic”, Tehnički vjesnik 23(1), 301‒306 (2016).
  • [17] S. C. Kapfer, S. T. Hyde, K. Mecke, C. H. Arns, G. E. Schröder- Turk, “Minimal surface scaffold designs for tissue engineering”, Biomaterials 32(29), 6875‒6882 (2011).
  • [18] C. Yan, L. Hao, A. Hussein, P. Young, “Ti-6Al-4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting”, Journal of the Mechanical Behavior of Biomedical Materials 5, 61‒73 (2015).
  • [19] S. Van Bael, G. Kerckhofs, M. Moesen, G. Pyka, J. Schrooten, J. P. Kruth, “Micro-CT-based improvement of geometrical and mechanical controllability of selective laser melted Ti6Al4V porous structures”, Materials Science and Engineering A528(24), 7423‒7431 (2011).
  • [20] D. Najjar, M. Bigerelle, H. Migaud, A. Iost, “Identification of scratch mechanisms on a retrieved metallic femoral head”, Wear 258 (1), 240‒250 (2005).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e2afe18e-9e44-4b0b-9dcd-b6a4a2f355de
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.