PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Post-Synthesis Microwave Plasma Treatment Effect on Magnetization and Morphology of Manganese-Iron Oxide Nanoparticles

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The influence of microwave (MW) plasma on magnetization and morphology of sol-gel synthesized MnFe2O4 ferrite nanoparticles is investigated in this study. Manganese (II) nitrate hexahydrate, ferric (III) nitrate nanohydrate and citric acid were used to synthesize ferrite nanoparticles via a facile sol-gel route. These ferrite nanostructures were heat-treated at 700ºC and then given MW plasma treatment for 10 min. The pristine MnFe2O4 and plasma treated MnFe2O4 showed almost similar structural formation with a slight increase in crystallinity on plasma treatment. However, XRD peak intensity slightly increased after plasma treatment, reflecting better crystallinity of the nanostructures. The size of the particle increased from 35 nm to 39 nm on plasma treatment. It was challenging to deduce the surface morphology of the nanoparticles since both samples were composed of a mixture of big and small clusters. Clusters that had been treated with plasma were larger in size than pristine ones. The band gap energy of the pristine MnFe2O4 sample was about 5.92 eV, which increased to 6.01 eV after treatment with MW plasma. The saturation magnetization of MnFe2O4 sample was noted about 0.78 emu/g before plasma treatment and 0.68 emu/g after MW plasma treatment.
Twórcy
  • Department of Physics, University of Agriculture Faisalabad, 38040, Pakistan
  • Department of Physics, University of Agriculture Faisalabad, 38040, Pakistan
  • Department of Physics, University of Agriculture Faisalabad, 38040, Pakistan
  • Department of Chemistry, University of Agriculture Faisalabad, 38040, Pakistan
Bibliografia
  • [1] A. Nairan, M. Khan, U. Khan, M. Iqbal, S. Riaz, S. Naseem, Temperature dependent magnetic response of antiferromagnetic doping in cobalt ferrite nanostructures, Nanomaterials 6 (4), 73 (2016). DOI: https://doi.org/10.3390/nano6040073
  • [2] Y. Khan, S. Shukrullah, M. Y. Naz, A. Ghaffar, I. Ahmad, S. Alsuhaibani, Ferrocene Weight Optimization for CVD Growth of Carbon Nanotubes Over Si/SiO2/Al2O3, Digest Journal of Nanomaterials and Biostructures 12 (4), 957-963, (2017).
  • [3] M.A. Munir, M.Y. Naz, S. Shukrullah, M.T. Ansar, G. Abbas, M.M. Makhlouf, Microwave plasma treatment of NiCuZn ferrite nanoparticles: A novel approach of improving opto-physical and magnetic properties, Appl. Phys. A. 128 (4), 1-10, (2022). DOI: https://doi.org/10.1007/s00339-022-05480-6
  • [4] I. Toqeer, M.Y. Naz, Y. Khan, M. Azam, R. Meer, Morphological and magnetic response of copper-substituted nickel ferrite nano-particles, Philosophical Magazine Letters 99 (2), 67-76, (2019).
  • [5] S. Yang, J.G. Kim, Magnetic properties of (Nia-Znb)XCu1-X Ferrite Nanoparticle Fabricated by Sol-Gel Process, Arch. Metall. Mater. 62 (2), 197-1200 (2017). DOI: https://doi.org/10.1515/amm-2017-0176
  • [6] M.J. Akhtar, M. Younas, Structural and transport properties of nanocrystalline MnFe2O4 synthesized by co-precipitation method, Solid State Sci. 14 (10), 1536-1542 (2012). DOI: https://doi.org/10.1016/j.solidstatesciences.2012.08.026
  • [7] A. Alarifi, N.M. Deraz, S. Shaban, Structural, morphological and magnetic properties of NiFe2O4 nano-particles, J. Alloys Compd. 486, 501-506 (2009). DOI: https://doi.org/10.1016/j.jallcom.2009.06.192
  • [8] M. Venkatesh, G.S. Kumar, S. Viji, S. Karthi, E.K. Girija, Microwave assisted combustion synthesis and characterization of nickel ferrite nanoplatelets, Mod. Electron. Mater. 2 (3), 74-78 (2016). DOI: https://doi.org/10.1016/j.moem.2016.10.003
  • [9] M.G. Naseri, E.B. Saion, H.A. Ahangar, M. Hashim, A.H. Shaari, Simple preparation and characterization of nickel ferrite nanocrystals by a thermal treatment method, Powder Technol. 212 (1), 80-88 (2011). DOI: https://doi.org/10.1016/j.powtec.2011.04.033
  • [10] J.L.H. Chau, C.C. Yang, Surface modification of silica nanopowders in microwave plasma, J. Exp. Nanosci. 9 (4), 357-361 (2014). DOI: https://doi.org/10.1080/17458080.2012.661473
  • [11] L. Dreesen, F. Cecchet, S. Lucas, DC magnetron sputtering deposition of titanium oxide nanoparticles: influence of temperature, pressure and deposition time on the deposited layer morphology, the wetting and optical surface properties, Plasma Processes Polym. 6, s849-s854 (2009). DOI: https://doi.org/10.1002/ppap.200932201
  • [12] S. Shukrullah, M.Y. Naz, N.U.H. Altaf, A. Ali, Effect of DC voltage on morphology and size distribution of silver nanorods synthesized through plasma-liquid interaction method, Mater. Today: Proc. (2020). DOI: https://doi.org/10.1016/j.matpr.2020.04.683
  • [13] B.P. Jacob, A. Kumar, R.P. Pant, S. Singh, E.M. Mohammed, Influence of preparation method on structural and magnetic properties of nickel ferrite nanoparticles, Bull. Mater. Sci. 34 (7), 1345-1350 (2011). DOI: https://doi.org/10.1007/s12034-011-0326-7
  • [14] V.K. Sankaranarayanan, C. Sreekumar, Precursor synthesis and microwave processing of nickel ferrite nanoparticles, Curr. Appl. Phys. 3 (2), 205-208 (2003). DOI: https://doi.org/10.1016/s1567-1739(02)00202-X
  • [15] R. Kesavamoorthi, A.N. Vigneshwaran, V. Sanyal, C.R. Raja, Synthesis and characterization of nickel ferrite nanoparticles by sol-gel auto combustion method, J. Curr. Chem. Pharm. Sci. 9 (1), 1-3 (2016).
  • [16] M.J.N. Isfahani, M.J. Fesharaki, V. Šepelák, Magnetic behavior of nickel-bismuth ferrite synthesized by a combined sol-gel/thermal method, Ceram. Int. 39 (2), 1163-1167 (2013). DOI: https://doi.org/10.1016/j.ceramint.2012.07.040
  • [17] L. Frolova, M.P. Derhachov, The Effect of Contact Non-equilibrium Plasma on Structural and Magnetic Properties of MnХFe3-XО4 Spinels, Nanoscale Res. Lett. 12, 505 (2017). DOI: https://doi.org/10.1186/s11671-017-2268-5
  • [18] M. Singh, S.P. Sud, Controlling the properties of magnesium-manganese ferrites, J. Mater. Sci. Eng. B 83 (1), 180-184 (2001). DOI: https://doi.org/10.1016/s0921-5107(01)00514-1
  • [19] M. Stoia, E. Muntean, C. Păcurariu, C. Mihali, Thermal behavior of MnFe2O4 and MnFe2O4/C nanocomposite synthesized by a solvothermal method, Thermochim. Acta 652, 1-8 (2017). DOI: https://doi.org/10.1016/j.tca.2017.03.009
  • [20] M.Y. Naz, M. Irfan, S. Shukrullah, I. Ahmad, A. Ghaffar, U.M. Niazi, S. Rahman, M. Jalalah, M.A. Alsaiari, M.K.A. Khan, Effect of microwave plasma treatment on magnetic and photocatalytic response of manganese ferrite nanoparticles for wastewater treatment, Main Group Chem. 20 (3), 423-435, (2021). DOI: https://doi.org/10.3233/MgC-210065
  • [21] A. Thakur, M. Singh, Preparation and characterization of nanosize Mn0.4zn0.6Fe2O4 ferrite by citrate precursor method, Ceram. Int. 29 (5), 505-511 (2003). DOI: https://doi.org/10.1016/s0272-8842(02)00194-3
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e2aa83a8-8734-4081-a900-e0011e00a5c6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.