PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Off-design analysis of MCFC hybrid system

Identyfikatory
Warianty tytułu
PL
Układ hybrydowy ogniwa paliwowego MCFC z turbiną gazowa w zmienionych warunkach pracy
Języki publikacji
EN
Abstrakty
EN
This paper sets out the results of mathematical modeling and numerical simulations of the off-design (part-load) operation of the molten carbonate fuel cell hybrid system (MCFC-HS). The governing equations of modeling are given and an adequate simulator of the MCFC stack was made and described. The performance of the MCFC-HS with part- and over-load operation is shown, and adequate maps are given and described. The ranges of possible system operation conditions are determined.
PL
Przedstawiono wyniki modelowania matemetycznego i symulacji cyfrowej pracy układu hybrydowego: węglanowe ogniwo paliwowe – turbina wodorowa w zmienionych warunkach pracy. Przedstawiono główne założenia wykorzystane do modelowania zarówno stosu ogniw paliwowych jak i pozostałych urządzeń. Przedstawiono pracę układu zarówno przy spadku obciążenia jak i jego nieznacznym wzroście na odpowiednio spreparowanych mapach.
Wydawca
Czasopismo
Rocznik
Tom
Strony
151--160
Opis fizyczny
Bibliogr. 43 poz., fig.
Twórcy
autor
  • Wydział Mechaniczny Energetyki i Lotnictwa Politechniki Warszawskiej
autor
  • Wydział Mechaniczny Energetyki i Lotnictwa Politechniki Warszawskiej
Bibliografia
  • [1] http://bioage.typepad.com.
  • [2] Arato, E., Bosio, B., Costa, P. and Parodi, F.: Preliminary experimental and theoretical analysis of limit performance of molten carbonate fuel cells, Journal of Power Sources 102(1-2), 2001, 74 – 81.
  • [3] Bedont, P., Grillo, O. and Massardo, A. F.: Off-design performance analysis of a hybrid system based on an existing molten fuel cell stack, Journal of Engineering for Gas Turbines and Power 125, 2003.
  • [4] Bischoff, M.: Large stationary fuel cell systems: Status and dynamic requirements, Journal of Power Sources 154, 2006, 461–466.
  • [5] Blum, L., Deja, R., Peters, R. and Stolten, D.: Comparison of efficiencies of low, mean and high temperature fuel cell systems, International Journal of Hydrogen Energy 36(17), 2011, 11056 – 11067.
  • [6] Budzianowski, W. M.: An oxy-fuel mass-recirculating process for H2 production with CO2 capture by autothermal catalytic oxyforming of methane, International Journal of Hydrogen Energy 35(14), 2010, 7454–7469.
  • [7] Cao, H., Li, X., Deng, Z., Jiang, J., Yang, J., Li, J. and Qin, Y.: Dynamic modeling and experimental validation for the electrical coupling in a 5-cell solid oxide fuel cell stack in the perspective of thermal coupling, International Journal of Hydrogen Energy 36(7), 2011, 4409–4418.
  • [8] Chan, S. H., Ho, H. K. and Tian, Y.: Modelling of simple hybrid solid oxide fuel cell and gas turbine power plant, Journal of Power Sources 109(1), 2002, 111 – 120.
  • [9] Chan, S. H., Ho, H. K. and Tian, Y.: Multi-level modeling of sofc-gas turbine hybrid system, International Journal of Hydrogen Energy 28(8), 2003, 889 – 900.
  • [10] Chen, Q., Weng, Y., Zhu, X. and Weng, S.: Design and partial load performance of a hybrid system based on a molten carbonate fuel cell and a gas turbine, Fuel Cells 6, 2006.
  • [11] Corporation, H.: HYSYS.Plant 2.1 User guide, 1996.
  • [12] Costamagna, P., Magistri, L. and Massardo, A. F.: Design and part-load performance of a hybrid system based on a solid oxide fuel cell reactor and a micro gas turbine, Journal of Power Sources 96(2), 2001, 352 – 368.
  • [13] Freeh, J. E., Steffen, C. J. and Larosiliere, L. M.: Off-design performance analysis of a solid-oxide fuel cell/gas turbine hybrid for auxiliary aerospace power, Third International Conference on Fuel Cell Science Engineering and Technology, 2005.
  • [14] He, W.: Dynamic model for molten carbonate fuel-cell power-generation systems, Energy Convertion and Managemet 39(8), 1998, 775–783.
  • [15] He, W. and Chen, Q.: Three-dimensional simulation of a molten carbonate fuel cell stack under transient conditions, Journal of Power Sources 73, 1998, 182–192.
  • [16] Herle, J. V., Marechal, F., Leuenberger, S., Membrez, Y., Bucheli, O. and Favrat, D.: Process flow model of solid oxide fuel cell system supplied with sewage biogas, Journal of Power Sources 131(1-2), 2004, 127 – 141. Selected papers presented at the Eighth Grove Fuel Cell Symposium.
  • [17] Hyp: HYSYS.Plant Steady State Modelling, 1998.
  • [18] Kang, B. S., Koh, J.-H. and Lim, H. C.: Experimental study on the dynamic characteristics of kW-scale molten carbonate fuel cell systems, Journal of Power Sources 94, 2001, 51–62.
  • [19] Kimijima, S. and Kasagi, N.: Performance evaluation of gas turbine-fuel cell hybrid micro generation system, Proceedings of ASME TURBO EXPO, 2002, number GT-2002-30111.
  • [20] Kurzke, J.: Compressor and turbine maps for gas turbine performance computer programs, 2004.
  • [21] Lanzini, A., Santarelli, M. and Orsello, G.: Residential solid oxide fuel cell generator fuelled by ethanol: Cell, stack and system modelling with a preliminary experiment, Fuel Cells 10(4), 2010, 654–675.
  • [22] Mangold, M., Sheng, M., Heidebrecht, P., Kienle, A. and Sundmacher, K.: Development of physical models for the process control of a molten carbonate fuel cell system, Chemical Engineering Science 59, 2004, 4847–4852.
  • [23] Marsano, F., Magistri, L. and Massardo, A.: Ejector performance influence on a solid oxide fuel cell anodic recirculation system, Journal of Power Sources 129(2), 2004, 216 – 228.
  • [24] Milewski, J. and Lewandowski, J.: Comparative analysis of time constants in solid oxide fuel cell processes – selection of key processes for modeling power systems, Journal of Power Technologies 91(1), 2011, 1–5.
  • [25] Milewski, J., Miller, A. and Sałacinski, J.: 2007a, Off-design analysis of SOFC hybrid system, International Journal of Hydrogen Energy 32(6), 687–698.
  • [26] Milewski, J., Miller, A. and Sałacinski, J.: 2007b, Off-design operation of fuel cells gas turbine hybrid system, 7th European Conference on Turbomachinery–Fluid Dynamics and Thermodynamics, pp. 699–715.
  • [27] Milewski, J., Salacinski, J. and Miller, A.: The reduction of CO2 emission of gas turbine power plant by using a molten carbonate fuel cell, ASME Paper GT2007(27030), 2007.
  • [28] Milewski, J., Świercz, T., Badyda, K., Miller, A., Dmowski, A. and Biczel, P.: The control strategy for a molten carbonate fuel cell hybrid system, International Journal of Hydrogen Energy 35(7), 2010, 2997–3000.
  • [29] Milewski, J., Świrski, K., Santarelli, M. and Leone, P.: Advanced Methods of Solid Oxide Fuel Cell Modeling, 1 edn, 2011, Springer-Verlag London Ltd.
  • [30] Miller, A. and Lewandowski, J.: Off-design operation of Steam Turbines [Praca turbin parowych w zmienionych warunkach], Warsaw University of Technology Publishers, 1992.
  • [31] Minh, N.: Solid oxide fuel cell technology-features and applications, Solid State Ionics ,2004.
  • [32] Morita, H., Komoda, M., Mugikura, Y., Izaki, Y., Watanabe, T., Masuda, Y. and Matsuyama, T.: Performance analysis of molten carbonate fuel cell using a li/na electrolyte, Journal of Power Sources 112(2), 2002, 509 – 518.
  • [33] Palsson, J. and Selimovic, A.: Design and off-design predictions of a combined SOFC and gas turbine system, Proceedings of ASME TURBO EXPO 2001.
  • [34] Sanchez, D., Chacartegui, R., de Escalona, J. M., Munoz, A. and Sanchez, T.: Performance analysis of a mcfc & supercritical carbon dioxide hybrid cycle under part load operation, International Journal of Hydrogen Energy 36(16), 2011, 10327–10336. European Fuel Cell 2009.
  • [35] Sheng, M., Mangold, M. and Kienle, A.: A strategy for the spatial temperature control of a molten carbonate fuel cell system, Journal of Power Sources 162, 2006, 1213–1219.
  • [36] Stiller, C.: Design, operation and control modeling of SOFC/GT Hybrid Systems, Phd thesis, Norwegian University of Science and Technology, 2006.
  • [37] Stiller, C., Thorud, B. and Bolland, O.: Safe dynamic operation of a simple SOFC/GT hybrid system, Proceedings of ASME Turbo EXPO, 2005.
  • [38] Stiller, C., Thorud, B., Bolland, O., Kandepu, R. and Imsland, L.: Control strategy for a solid oxide fuel cell and gas turbine hybrid system, Journal of Power Sources 158(1), 2006, 303 – 315.
  • [39] Thorstensen, B.: A parametric study of fuel cell system efficiency under full and part load operation, Journal of Power Sources 92(1-2), 2001, 9 – 16.
  • [40] Trzcińska, Z., Miller, A. and Lewandowski, J.: Performance characteristic of reaction type turbine stage groups, Proceedings of the 2nd European Conference on Turbomachinery – Fluid Dynamics and Thermodynamics, 1997.
  • [41] Wee, J.-H.: Molten carbonate fuel cell and gas turbine hybrid systems as distributed energy resources, Applied Energy 88, 2011, 4252–4263.
  • [42] Wu, W. and Luo, J.-J.: Nonlinear feedback control of a preheater-integrated molten carbonate fuel cell system, Journal of Process Control 20(7), 2010, 860–868.
  • [43] Zhang, H., Lin, G. and Chen, J.: Performance analysis and multi-objective optimization of a new molten carbonate fuel cell system, International Journal of Hydrogen Energy 36(6), 2011, 4015–4021.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e2a8ff99-8627-4640-8d45-eba18b5806f6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.