PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Shear rupture behaviors of intact and granulated Wombeyan marble with the flat-jointed model

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Many large hydropower projects have been constructed in the highly interlocked and non-persistently jointed rock mass (e.g., the columnar jointed basalt). Regarding the granulated Wombeyan marble as an analog of such rock mass, a series of direct shear test simulations under constant normal loading (CNL) and constant normal stiffness (CNS) boundary conditions were performed to better understand its shear rupture behavior using the flat-jointed model based on the discrete element method. The results show that the shear process under the CNS condition can be divided into four stages: linear-elastic stage, yielding stage, shear wear stage and shear sliding stage. The strain-strengthening in the shear wear stage is evident due to the feedback normal stress provided by the cap induced by shear dilation. As the initial applied normal stress increases, the peak shear strength point of specimens under CNL approaches the yield point of specimens under CNS. Additionally, the shear rupture process under CNS is strain controlled in granulated specimens but stress controlled in intact specimens. Correspondingly, the shear rupture zone creation in granulated specimens is not but that in intact specimens is dependent on the initial applied normal stress. Finally, it is demonstrated that the CNS condition can improve the stability of rock slopes or underground excavations embedded in such rock mass and its improvement effect increases with the normal stiffness.
Rocznik
Strony
art. no. e51, 2022
Opis fizyczny
Bibliogr. 45 poz., rys., wykr.
Twórcy
autor
  • School of Resources and Safety Engineering, Central South University, Changsha 410083, Hunan, China
autor
  • School of Resources and Safety Engineering, Central South University, Changsha 410083, Hunan, China
autor
  • School of Highway, Chang’an University, Xi’an 710064, Shaanxi, China
autor
  • Department of Civil Engineering, Chu Hai College of Higher Education, Hong Kong, China
autor
  • Guangdong Provincial Key Laboratory of Deep Earth Sciences and Geothermal Energy Exploitation and Utilization, Institute of Deep Earth Sciences and Green Energy, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China
Bibliografia
  • 1. Bewick RP, Kaiser PK, Bawden WF. Shear rupture under constant normal stiffness boundary conditions. Tectonophysics. 2014;634:76–90.
  • 2. Zhang Y, Jiang Y, Asahina D, Wang Z. Shear behavior and acoustic emission characteristics of en-echelon joints under constant normal stiffness conditions. Theor Appl Fract Mech. 2020;109:102772.
  • 3. Shang J, Zhao Z, Ma S. On the shear failure of incipient rock discontinuities under CNL and CNS boundary conditions: insights from DEM modelling. Eng Geol. 2018;234:153–66.
  • 4. Tang ZC, Wong LNY. Influences of normal loading rate and shear velocity on the shear behavior of artificial rock joints. Rock Mech Rock Eng. 2016;49:2165–72.
  • 5. Rao Q, Sun Z, Stephansson O, Li C, Stillborg B. Shear fracture (mode II) of brittle rock. Int J Rock Mech Min Sci. 2003;40(3):355–75.
  • 6. Petit JP. Normal stress dependent rupture morphology in direct shear tests on sandstone with applications to some natural fault surface features. Int J Rock Mech Min Sci Geomech Abstr. 1988;25(6):411–9.
  • 7. Obert L, Brady BT, Schmechel FW. The effect of normal stiffness on the shear resistance of rock. Rock Mech. 1976;8(2):57–72.
  • 8. Chen Y, Wen G, Hu J. Analysis of deformation characteristics of fully grouted rock bolts under pull-and-shear loading. Rock Mech Rock Eng. 2020;53:2981.
  • 9. Li KH, Cao P, Zhang K, Zhong YF. Macro and meso characteristics evolution on shear behavior of rock joints. J Cent South Univ. 2015;22:3087–96.
  • 10. Archambault G, Flamand R, Rouleau A, Daigneault R. Mechanics of fault zone development in brittle dilatant analogue geomaterial. The 33th US Symposium on Rock Mechanics (USRMS): American Rock Mechanics Association, 1992.
  • 11. Bewick RP, Kaiser PK, Bawden WF. DEM simulation of direct shear: 2. Grain boundary and mineral grain strength component influence on shear rupture. Rock Mech Rock Eng. 2013;47(5):1673–92.
  • 12. Zhang X, Lin H, Wang Y, Zhao Y. Creep damage model of rock mass under multi-level creep load based on spatio-temporal evolution of deformation modulus. Arch Civil Mech Eng. 2021;21(2):71.
  • 13. Zhang X, Lin H, Wang Y, Yong R, Zhao Y, Du S. Damage evolution characteristics of saw-tooth joint under shear creep condition. Int J Damage Mech. 2021;30(3):453–80.
  • 14. Cho N, Martin C, Sego D. Development of a shear zone in brittle rock subjected to direct shear. Int J Rock Mech Min Sci. 2008;45(8):1335–46.
  • 15. Bewick RP, Kaiser PK, Bawden WF, Bahrani N. DEM simulation of direct shear: 1. Rupture under constant normal stress boundary conditions. Rock Mech Rock Eng. 2013;47(5):1647–71.
  • 16. Meng B, Jing H, Yang S, Wu Y, Wang Y, Huang Y. Experimental investigation on shear behavior of intact sandstones under constant normal stiffness conditions. Int J Geomech. 2021;21(2):04020259.
  • 17. Ji H, Zhang JC, Xu WY, Wang RB, Wang HL, Yan L, et al. Experimental investigation of the anisotropic mechanical properties of a columnar jointed rock mass: observations from laboratory-based physical modelling. Rock Mech Rock Eng. 2017;50(7):1919–31.
  • 18. Shi A, Wei Y, Zhang Y, Tang M. Study on the strength characteristics of columnar jointed basalt with a true triaxial apparatus at the baihetan hydropower station. Rock Mech Rock Eng. 2020;53(11):4947–65.
  • 19. Xiang Z, Wang H, Xu W, Xie W-C. Experimental study on hydromechanical behaviour of anisotropic columnar jointed rock-like specimens. Rock Mech Rock Eng. 2020;53(12):5781–94.
  • 20. Rosengren K, Jaeger J. The mechanical properties of an inter-locked low-porosity aggregate. Geotechnique. 1968;18(3):317–26.
  • 21. Walton G, Alejano LR, Arzua J, Markley T. Crack damage parameters and dilatancy of artificially jointed granite samples under triaxial compression. Rock Mech Rock Eng. 2018;51:1637.
  • 22. Bahrani N, Kaiser PK. Strength degradation of non-persistently jointed rockmass. Int J Rock Mech Min Sci. 2013;62:28–33.
  • 23. Li Y, Bahrani N. A continuum grain-based model for intact and granulated Wombeyan marble. Comput Geotech. 2021;129:103872.
  • 24. Zhou X, Xie Y, Long G, Zeng X, Li J, Yao L, et al. DEM analysis of the effect of interface transition zone on dynamic splitting tensile behavior of high-strength concrete based on multi-phase model. Cement Concret Res. 2021;149:106577.
  • 25. Li K, Cheng Y, Fan X. Roles of model size and particle size distribution on macro-mechanical properties of Lac du Bonnet granite using flat-joint model. Comput Geotech. 2018;103:43–60.
  • 26. Jiang Z, Gao G, Xiong X, Wang Y. Mechanical response and deformation mechanisms of porous PZT95/5 ceramics under shock-wave compression. J Eur Ceram Soc. 2021;41(2):1251–62.
  • 27. Potyondy D. Simulating perforation damage with a flat-jointed bonded-particle material. In: 51st US rock mechanics/geomechanics symposium: American Rock Mechanics Association, 2017.
  • 28. Xu G, He C, Wang J, Chen Z. Study on the mechanical behavior of a secondary tunnel lining with a yielding layer in transversely isotropic rock stratum. Rock Mech Rock Eng. 2020;53:2957.
  • 29. Gutiérrez-Ch JG, Senent S, Melentijevic S, Jimenez R. A DEM-based factor to design rock-socketed piles considering socket roughness. Rock Mech Rock Eng. 2021;54:3409.
  • 30. Gerogiannopoulos NG. A critical state approach to rock mechanics: Imperial College London. London: University of London; 1976.
  • 31. Wu S, Xu X. A study of three intrinsic problems of the classic discrete element method using flat-joint model. Rock Mech Rock Eng. 2016;49(5):1813–30.
  • 32. Cheng Y, Wong LNY. A study on mechanical properties and fracturing behavior of Carrara marble with the flat-jointed model. Int J Numer Anal Meth Geomech. 2020;44(6):803–22.
  • 33. Bahrani N, Kaiser PK, Valley B. Distinct element method simulation of an analogue for a highly interlocked, non-persistently jointed rockmass. Int J Rock Mech Min Sci. 2014;71:117–30.
  • 34. ASTM. Standard test method for performing laboratory direct shear strength tests of rock specimens under constant normal force. West Conshohocken: ASTM International; 2008.
  • 35. Wang P, Yin Z-Y, Zhou W-H, Chen W-B. Micro-mechanical analysis of soil–structure interface behavior under constant normal stiffness condition with DEM. Acta Geotech. 2021. https://doi.org/10.1007/s11440-021-01374-8.
  • 36. Li K, Yin ZY, Cheng Y, Cao P, Meng J. Three-dimensional discrete element simulation of indirect tensile behaviour of a transversely isotropic rock. Int J Numer Anal Meth Geomech. 2020;44(13):1812–32.
  • 37. Fan X, Jiang X, Liu Y, Lin H, Li K, He Z. Local stress distribution and evolution surrounding flaw and opening within rock block under uniaxial compression. Theor Appl Fract Mech. 2021;112:102914.
  • 38. Fan X, Yang Z, Li K. Effects of the lining structure on mechanical and fracturing behaviors of four-arc shaped tunnels in a jointed rock mass under uniaxial compression. Theor Appl Fract Mech. 2021;112:102887.
  • 39. Wang J, Gutierrez MS, Dove JE. Numerical studies of shear banding in interface shear tests using a new strain calculation method. Int J Numer Anal Meth Geomech. 2007;31(12):1349–66.
  • 40. Huang D, Wang J, Liu S. A comprehensive study on the smooth joint model in DEM simulation of jointed rock masses. Granular Matter. 2015;17(6):775–91.
  • 41. Wang J, Dove JE, Gutierrez MS. Discrete-continuum analysis of shear banding in the direct shear test. Géotechnique. 2007;57(6):513–26.
  • 42. Patton FD. Multiple modes of shear failure in rock. In: 1st ISRM Congress: International Society for Rock Mechanics, 1966.
  • 43. Lajtai E. Mechanics of second order faults and tension gashes. Geol Soc Am Bull. 1969;80(11):2253–72.
  • 44. Tchalenko J. Similarities between shear zones of different magnitudes. Geol Soc Am Bull. 1970;81(6):1625–40.
  • 45. Saeb S, Amadei B. Modelling joint response under constant or variable normal stiffness boundary conditions. Int J Rock Mech Min Sci Geomech Abstr Pergamon. 1990;27:213–7.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e2a892d4-2a35-4fb3-a6f8-5a7db7c8de29
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.