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INTEGRALS OF THE ONE-DIMENSIONAL CONTINUITY EQUATION 

Abstract 

The authors analyze the method used by Cauchy and Lagrange to obtain the integral of continuity equation. The 

authors propose their own method of integration using Schwarz’ theorem. As a result, the authors obtain a greater 

number of possible solutions with a higher level of generality while also being able to identify the basic disadvantages 

of the Cauchy-Lagrangian method. Further, the authors conducted a detailed interpretation of the results of their 

solution.  

 

1. OBTAINING THE INTEGRAL OF THE ONE-DIMEN-
SIONAL CONTINUITY EQUATION BY USING THE 
CAUCHY AND LAGRANGE METHOD  

As we know, August Cauchy and Joseph Lagrange, when inte-
grating the Euler equations of motion, used a particular method 
whose procedure is described in [1]. Let’s try to apply this method to 
integrate a one-dimensional continuity equation. 

Let us write this equation in the form: 

𝜕

𝜕𝑡
(

𝜌

𝜌0
) =

−𝜕

𝜕𝑥
(

𝜌

𝜌0
∙u) (1.1) 

 
The first step of the above-mentioned Cauchy-Lagrangian 

method will assume that in the space of one-dimensional transient 
flow there is, as yet  to be defined, a variable η (Greek letter eta), as 
expressed through the function: 

η=η(x,t) (1.2) 

 
which has its partial derivatives. 

The next step of this method is an assumption that the following 
relationship occurs: 

𝜌

𝜌0
=

𝜕𝜂

𝜕𝑥
 (1.3) 

 
Next, for both sides of (1.3) we carry out a partial derivative operation 
with respect to time t. We get: 

𝜕

𝜕𝑡
(

𝜌

𝜌0
) =

𝜕2𝜂

𝜕𝑥𝜕𝑡
 (1.4) 

 
And relationship (1.4) transforms into the form: 

𝜕

𝜕𝑡
(

𝜌

𝜌0
) =

𝜕

𝜕𝑥
(

𝜕𝜂

𝜕𝑡
) (1.5) 

 
Now we substitute (1.5) into (1.1) and we get: 

𝜕

𝜕𝑥
(

𝜕𝜂

𝜕𝑡
) =

−𝜕

𝜕𝑥
(

𝜌

𝜌0
∙u) (1.6) 

 
Then, we group the terms of (1.6) on the left side of the equation: 

𝜕

𝜕𝑥
(

𝜕𝜂

𝜕𝑡
) +

𝜕

𝜕𝑥
(

𝜌

𝜌0
∙u) = 0 (1.7) 

 
where, after pulling the symbol of the operator before the brackets, 
we get the equation in the form that is prepared for integration: 

𝜕

𝜕𝑥
(

𝜕𝜂

𝜕𝑡
+

𝜌

𝜌0
∙u) = 0 (1.8) 

 
The integral of the equation (1.8) is: 

𝜕𝜂

𝜕𝑡
+

𝜌

𝜌0
∙u=g(𝑡) (1.9) 

 
where g(t) is any function of time. 
Therefore, similar to the result of the integration of Euler’s equation 
of motion by the Cauchy-Lagrange method, we only obtain one inte-
gral of the continuity equation. 

2. OBTAINING THE INTEGRALS OF THE ONE-DIMEN-
SIONAL CONTINUITY EQUATION WITH SCHWARZ’ 
THEOREM 

The method of obtaining integrals with Schwarz’ theorem was 
introduced and described in [1], based on the example of the Euler 
equation of motion. Let’s now use it for the continuity equation. 

Let the continuity equation have a form similar to (1.1) in this 
instance: 

𝜕

𝜕𝑡
(

𝜌

𝜌0
) =

−𝜕

𝜕𝑥
(

𝜌

𝜌0
∙u) (2.1) 

 
Assuming the existence of the flow space of the function: 

η=η(x,t) (2.2) 

 
as in par. 1, having the partial derivatives of the corresponding order, 
let’s now write Schwarz’ theorem for this function: 

𝜕2𝜂

𝜕𝑥𝜕𝑡
=

𝜕2𝜂

𝜕𝑡𝜕𝑥
 (2.3) 

 
which we transform to present it in a more spectacular form: 

𝜕

𝜕𝑡
(

𝜕𝜂

𝜕𝑥
) =

𝜕

𝜕𝑥
(

𝜕𝜂

𝜕𝑡
) (2.4) 

 
Now by comparing the left and right sides of the relationships (2.1) 
and (2.4), respectively, we get two equations: 

𝜕

𝜕𝑡
(

𝜕𝜂

𝜕𝑥
) =

𝜕

𝜕𝑡
(

𝜌

𝜌0
) (2.5) 

 

𝜕

𝜕𝑥
(

𝜕𝜂

𝜕𝑡
) =

−𝜕

𝜕𝑥
(

𝜌

𝜌0
∙u) (2.6) 

 



Badania 

 

   

78  12/2016 
 

Which we transform into the form: 

𝜕

𝜕𝑡
(

𝜕𝜂

𝜕𝑥
) −

𝜕

𝜕𝑡
(

𝜌

𝜌0
) = 0 (2.7) 

 
𝜕

𝜕𝑥
(

𝜕𝜂

𝜕𝑡
) +

𝜕

𝜕𝑥
(

𝜌

𝜌0
∙u) = 0 (2.8) 

 
We then prepare them for integration: 

𝜕

𝜕𝑡
(

𝜕𝜂

𝜕𝑥
−

𝜌

𝜌0
) = 0 (2.9) 

 
𝜕

𝜕𝑥
(

𝜕𝜂

𝜕𝑡
+

𝜌

𝜌0
∙u) = 0 (2.10) 

 
The integration gives us: 

𝜕𝜂

𝜕𝑥
−

𝜌

𝜌0
=h(𝑥) (2.11) 

 
𝜕𝜂

𝜕𝑡
+

𝜌

𝜌0
∙u=g(𝑡) (2.12) 

Thus, as a result of Schwarz’ theorem, we get two integrals of 
the one-dimensional continuity equation, in which h(x) and g(t) are 
any functions of x and t.  

The second of these integrals, i.e. (2.12), is of course identical 
to the integral of the equation obtained by the Cauchy-Lagrangian 
method. 

3. OBTAINING A FURTHER INTEGRAL OF THE ONE-DI-
MENSIONAL CONTINUITY EQUATION WITH THE 
CAUCHY-LAGRANGIAN METHOD 

For this purpose, let’s use the continuity equation in the form 
presented in (1.1), but with its parties multiplied by (-1): 

𝜕

𝜕𝑡
(

−𝜌

𝜌0
) =

𝜕

𝜕𝑥
(

𝜌

𝜌0
∙u) (3.1) 

 
The difference between equations (1.1) and (3.1) is very important, 
because the integration of the equation (3.1) with the Cauchy-Lagran-
gian method gives an integral different than that of (1.9). 
For this reason we assume that in a space of one-dimensional tran-
sient flow there is, as yet to be defined, a variable ξ (Greek letter ksi) 
expressed with the function: 

ξ=ξ(x,t) (3.2) 

 
which has its partial derivatives. 
The next step of this method is an assumption that the following rela-
tionship occurs: 

−𝜌

𝜌0
=

𝜕𝜉

𝜕𝑥
 (3.3) 

 
Next, for both sides of (3.3) we carry out a partial derivative operation 
with respect to time t. We get: 

𝜕

𝜕𝑡
(

−𝜌

𝜌0
) =

𝜕2𝜉

𝜕𝑥𝜕𝑡
 (3.4) 

 
Relationship (3.4) is transformed into the form: 

𝜕

𝜕𝑡
(

−𝜌

𝜌0
) =

𝜕

𝜕𝑥
(

𝜕𝜉

𝜕𝑡
) (3.5) 

 
Now we substitute (3.5) to (3.1) and we get: 

𝜕

𝜕𝑥
(

𝜕𝜉

𝜕𝑡
) =

𝜕

𝜕𝑥
(

𝜌

𝜌0
∙u) (3.6) 

 
Then, we group the terms of (3.6) on the left side of the equation: 

𝜕

𝜕𝑥
(

𝜕𝜉

𝜕𝑡
) −

𝜕

𝜕𝑥
(

𝜌

𝜌0
∙u) = 0 (3.7) 

 
where, after pulling the symbol of the operator before the brackets, 
we get the equation in the form that is prepared for integration: 

𝜕

𝜕𝑥
(

𝜕𝜉

𝜕𝑡
−

𝜌

𝜌0
∙u) = 0 (3.8) 

 
The integral of the equation (3.8) is: 

𝜕𝜉

𝜕𝑡
−

𝜌

𝜌0
∙u=i(𝑡) (3.9) 

 
where i(t) is any function of time. 

Therefore, similar to the result of the integration of Euler’s equa-
tion of motion by the Cauchy-Lagrange method, we only obtain one 
integral of the continuity equation. However, when comparing the in-
tegrals (1.9) and (3.9), we find that they are quite different. 

4. OBTAINING A FURTHER INTEGRAL OF THE ONE-DI-
MENSIONAL CONTINUITY EQUATION WITH 
SCHWARZ’ THEOREM 

Like in par. 3 of this study, let’s integrate the continuity equation (3.1) 
once more, but this time with Schwarz’ theorem [1].  For methodolog-
ical reasons, let’s rewrite the equation here again, assigning it an ap-
propriate and current paragraph number: 

𝜕

𝜕𝑡
(

−𝜌

𝜌0
) =

𝜕

𝜕𝑥
(

𝜌

𝜌0
∙u) (4.1) 

 
Assuming the existence of the flow space of the function: 

ξ=ξ(x,t) (4.2) 

 
which has its partial derivatives. 
Let us write Schwarz’ theorem for this function: 

𝜕2𝜉

𝜕𝑥𝜕𝑡
=

𝜕2𝜉

𝜕𝑡𝜕𝑥
 (4.3) 

 
which we transform to present it in a more spectacular form: 

𝜕

𝜕𝑡
(

𝜕𝜉

𝜕𝑥
) =

𝜕

𝜕𝑥
(

𝜕𝜉

𝜕𝑡
) (4.4) 

 
Now by comparing the left and right sides of the relationships (4.1) 
and (4.4), respectively, we get two equations: 

𝜕

𝜕𝑡
(

𝜕𝜉

𝜕𝑥
) =

𝜕

𝜕𝑡
(

−𝜌

𝜌0
) (4.5) 

 
𝜕

𝜕𝑥
(

𝜕𝜉

𝜕𝑡
) =

𝜕

𝜕𝑥
(

𝜌

𝜌0
∙u) (4.6) 
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Which we transform into the form: 

𝜕

𝜕𝑡
(

𝜕𝜉

𝜕𝑥
) +

𝜕

𝜕𝑡
(

𝜌

𝜌0
) = 0 (4.7) 

 

𝜕

𝜕𝑥
(

𝜕𝜉

𝜕𝑡
) −

𝜕

𝜕𝑥
(

𝜌

𝜌0
∙u) = 0 (4.8) 

 
To further transform them into the form prepared for integration: 

𝜕

𝜕𝑡
(

𝜕𝜉

𝜕𝑥
+

𝜌

𝜌0
) = 0 (4.9) 

 

𝜕

𝜕𝑥
(

𝜕𝜉

𝜕𝑡
−

𝜌

𝜌0
∙u) = 0 (4.10) 

 
The integration gives us: 

𝜕𝜉

𝜕𝑥
+

𝜌

𝜌0
=j(𝑥) (4.11) 

 
𝜕𝜉

𝜕𝑡
−

𝜌

𝜌0
∙u=i(𝑡) (4.12) 

 
Thus, as a result of Schwarz’ theorem, we get two integrals of 

the one-dimensional continuity equation, in which j(x) and i(t) are any 
functions of x and t. 

The second of these integrals, i.e. (4.12), is of course identical 
to the integral (3.9) of this equation obtained by the Cauchy-Lagran-
gian method. 

It should be noted that the two integrals of the one-dimensional 
continuity equation obtained in the current section are actually two 
further integrals of the continuity equation. This is due to the explicit 
comparison of the complete results of the integration in (2.11), (2.12) 
and in (4.11),  (4.12), respectively. The presence of these two sets of 
results from the integration of the one-dimensional continuity equa-
tion shows that the equation is satisfied by two different functions: ξ 
and η. 

 

 
1 Function φ is well-known as a potential of velocity. 

5. IDENTIFICATION OF THE FUNCTIONS KSI AND ETA. 
VERIFICATION OF THE RESULTS OF THE INTEGRA-
TION OF THE ONE-DIMENSIONAL CONTINUITY 
EQUATION 

Unlike the historical Cauchy-Lagrangian integral of the Euler 
equations of motion, in which the indistinct physical function φ was 
interpreted1, we are currently in a quite comfortable situation, be-
cause in par. 3 of this study we have obtained a set of two one-di-
mensional integrals of the continuity equation that were previously 
known [2]. 

In ref [2], on the basis of independent reasoning that led to the 
articulation of some of the properties of the one-dimensional continu-
ity equation, formulas were derived for the partial derivatives of the 
function ξ; see (3.11) and (3.13) in [2]. 
In addition, here it turns out that the function ξ is a identifiable physical 
quantity. It is the function that expresses the position of liquid planes 
in a flow with respect to the position occupied by those planes while 
the fluid is at rest. 
Also, the function η can be identified as expressing the initial position 
of the liquid planes – counted starting from 0 on the x axis – for the 
system of coordinates x, t. The following Figure 1 contains an expla-
nation of the situation described herein. 
In the figure, the following are represented on plane x,t: 
– The line t0E’A’ is the trajectory of the piston, which begins its 

movement at time t0, when time t = ϑ  (Greek letter theta) is at 

the point E’ with coordinates  ξ1(ϑ ), and at time t reaches point 

A’, with coordinates ξ1(t); 
– The line t0CD is the trajectory of the flow front, which at time t = ϑ 

is at point C with coordinates  x2(ϑ ), and at time t reaches point 

D, with coordinates x2(t); 
The area between lines t0E’A’ i t0CD is the area of flow. The area 
above line t0CD is occupied by the fluid at rest. 
At any point of B’(x,t) – in the area of flow on the plane x,t – a liquid 

plane is located, in which the fluid at rest has coordinates x2(ϑ )≡η, 

at point B’ has coordinates with respect to x2(ϑ ) equal to  ξ(x,t), while 

its coordinate – calculated starting from 0 on the x axis – is x. It is 
obvious that the following relationship exists: 

𝑥2(𝜗)=𝑥–ξ(𝑥,t) (5.1) 

which – because of the arbitrary choice of point B’ – will be preserved 
throughout the flow area and therefore can be written as a relation of 
general relevance: 

 
Fig. 1. The system of coordinates x, t with an interpretation of functions ξ and η. 
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η = x –  ξ (5.2) 

 
Let us rewrite the following formulas (3.11) and (3.13) from [2], giving 
them the current numbering: 

𝜕𝜉

𝜕𝑥
= 1 −

𝜌

𝜌0
 (5.3) 

 

𝜕𝜉

𝜕𝑡
=

𝜌

𝜌0
∙u (5.4) 

 
In this study, these formulas - with simple transformations - can be 
presented in the following forms:  

𝜕

𝜕𝑥
(𝑥 − 𝜉) =

𝜌

𝜌0
 (5.5) 

 

𝜕

𝜕𝑡
(𝑥 − 𝜉) =

−𝜌

𝜌0
∙u (5.6) 

 
For the full effect, using the relationship (5.2) let’s transform formulas 
(5.5) and (5.6) to take the form of: 

𝜕𝜂

𝜕𝑥
=

𝜌

𝜌0
 (5.7) 

 

𝜕𝜂

𝜕𝑡
=

−𝜌

𝜌0
∙u (5.8) 

 
In this way, by transforming the integrals of the one-dimensional con-
tinuity equation (5.3) and (5.4) by using (5.2), we get a second (fur-
ther) set of two integrals of the equation. 
It appears that the result of integrating the one-dimensional continuity 
equation consists of two sets of two integrals expressing the partial 
derivatives of the two functions ξ and η. 
As you can see, these functions meet the one-dimensional continuity 
equation in an elementary way. 
Let’s write down here the basic properties of function η: 
– this function, like function ξ, is expressed in units of length, 
– along the trajectories of liquid planes has constant values, i.e. 

η = const., 
– along the trajectory of piston [2] resets, i.e. η = 0,  because on 

this line x = ξ, 
– along the trajectory of flow front [2] η = x, because on this line 

ξ = 0. 
The results of integrating the one-dimensional continuity equation are 
obtained in the form of general integrals, because any functions of x 
and t are presented in them as an unknown but are formally required 
by the procedure. 
Having now two sets of integrals (5.3), (5.4) and (5.7), (5.8) of this 
equation, respectively, in which the integrals may be considered as 
specific, it is possible to verify all integrals obtained in this study by 
determining the values which will be accepted by the aforementioned 
functions of x and t. 
Let’s start with the one-dimensional integrals of the continuity equa-
tion obtained using Schwarz’ theorem, i.e. from (2.11), (2.12) and 
(4.11), (4.12), respectively. 
Substituting these formulas, (5.7), (5.8) and (5.3), (5.4), we obtain: 

ℎ(𝑥) ≡ 0 (5.9) 

 

 
2  If so, then the expression (6.1) should include any function of x. 

𝑔(𝑡) ≡ 0 (5.10) 

 
and: 

𝑗(𝑥) ≡ 1 (5.11) 

 

𝑖(𝑡) ≡ 0 (5.12) 

 
Let’s now try to do the same with the one-dimensional integrals of the 
continuity equation obtained using the Cauchy-Lagrangian method, 
i.e. (1.9) and (3.9). 
Substituting these formulas, (5.8) and (5.4) respectively, we then ob-
tain: 

𝑔(𝑡) ≡ 0 (5.13) 

 

𝑖(𝑡) ≡ 0 (5.14) 

 
of course, according to (5.10) and (5.12). 

6. INTERPRETATION OF RESULTS 

In light of the effects of the Cauchy-Lagrangian method for the 
integration of the one-dimensional continuity equation presented in 
par. 1, 3, and 5 of this paper, we can determine the assumptions (1.3) 
and (3.3) and their role in the procedure leading to the formation of 
the integrals. This determination of the suitability and role of these 
assumptions (as above) will also be related to the well-known as-
sumptions made by Cauchy and Lagrange in their procedure for inte-
grating the Euler equations of motion. 
Since Cauchy and Lagrange have achieved indisputable historical 
precedence, let’s now try to go a little further in our analysis of their 
course of thought presented in [1]. 
We can certainly assume that the assumptions of Cauchy and La-
grange: 

u=
𝜕𝜑

𝜕𝑥
 (6.1) 

 
where u is the velocity of a fluid and φ is a potential of velocity, could 
not be conceived as a guess of one of the integrals2 of the Euler 
equations of motion! Therefore (6.1) could be an expression that – 
when substituted for the integrated equation – would only allow us to 
obtain an integral. 
Thus, the above assumption made by Cauchy and Lagrange is only 
a substitution that allowed the integration of the Euler equations of 
motion by the “substitution method”. From here, the purpose of these 
assumptions it quite clearly revealed – both Cauchy and Lagrange 
utilized them for the integration of the Euler equations of motion, as 
well as (1.3) and (3.3) in this paper – for the integration of the one-
dimensional continuity equation and their role in the procedure lead-
ing to the integrals. 
 
At this point, when considering the method Cauchy and Lagrange ap-
plied to the integration of partial differential equations, it becomes 
possible to formulate comments and summarize that method. 
Apart from this imperfection, which affects only one integral, let’s take 
a closer look at the assumptions, which are only formally (technically) 
sufficient for the existence of such a method.  
As a necessary condition to obtain the valued and real results of in-
tegration, it is an obvious requirement that these assumptions not be 
false. 
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Let’s examine the Cauchy and Lagrange assumption (6.1) for the in-
tegration of the Euler equation of motion, and further assumptions 
(1.3) and (3.3) for the integration of the one-dimensional continuity 
equation. 
We can see that assumption (1.3) – in the Cauchy-Lagrangian pro-
cedure of integration for the one-dimensional continuity equation – is 
true, because it leads to the solution (1.9) in accordance with (2.12), 
and therefore with (5.8), being in line with the (2.11), and therefore 
with (5.7). 
Whereas the assumption (3.3) – in the procedure above – is false 
because although it leads to the solution (3.9) in accordance with 
(4.12), and therefore with (5.4), it finds itself against the work demon-
strated in (4.11), and therefore with (5.3). 
Although a classification of the truth or falsity of the assumptions (1.3) 
and (3.3) was made using the obvious criteria, which were expres-
sions of the integrals of the one-dimensional continuity equation 
known from [2], for the making of such classification of assumptions 
(6.1) – the assumptions made by Cauchy and Lagrange – we surely 
lack any of the necessary criteria. 
Indeed, we are not quite sure whether assumption (6.1) – leading to 
the famous Euler integral equations of motion – is true or false. 
It follows that the risk of adopting a false assumption for the integra-
tion of partial differential equations using the Cauchy-Lagrangian 
method could be avoided, just in case it were possible to guess one 
of the of integrals of the equation in its full form. 

CONCLUSIONS 

Par. 6 presented the basic shortcomings of the Cauchy-Lagran-
gian method of integration of partial differential equations. 
However, in par. 2 and par. 4, the method that uses the Schwarz’ 
theorem was applied to the integration of the one-dimensional conti-
nuity equation. 

As you can see here, when comparing the two procedures, the 
method of integrating partial differential equations using Schwarz’ 
theorem is free of the shortcomings of the Cauchy-Lagrangian 
method. The assumptions in (1.3) and (3.3) are simply not needed. 
Having to consider guessing one of the of integrals of the equation in 
its full form is not necessary either. 

The integration of partial differential equations using Schwarz’ 
theorem – in general case – allows you to obtain two integrals of the 
equation. 

In this study, the result of the integration of the one-dimensional 
continuity equation using this method show two sets of two integrals 
for the two different functions of ξ and η. 
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