PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Regression comparison of organic working mediums for low grade heat recovery operating on Rankine cycle

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A logistic-regression based classifier is developed here to predict the probability of any working fluid as a desirable candidate for ultra-low grade heat driven organic Rankine cycle. Global warming abilities, ozone depleting potentials as well as thermodynamic properties of the working medium are used to develop this generalized classifier. As a validation of the suggested classifier, more than 80 working fluids are screened, and regression analyses used to rate the most appropriate candidates. The preferable working mediums among those evaluated based on environmental impacts are HFCs. Considering environmental issues, safety concerns, and performance characteristics however, the preferable working fluids among those tested are HFC-245fa, followed by HFC-134a, HFC-227ea, HFC-236ea, HFC-236fa, HC-600, HC-600a, HC-601, and HC-601a.
Rocznik
Strony
257--270
Opis fizyczny
Bibliogr. 40 poz., tab., wykr.
Twórcy
  • Department of Mechanical Engineering, San Diego State University San Diego CA 92182, United States
autor
  • Department of Mechanical Engineering, San Diego State University San Diego CA 92182, United States
Bibliografia
  • [1] R. DiPippo, Second law assessment of binary plants generating power from low-temperature geothermal fluids, Geothermics 33 (2004) 565–586.
  • [2] W. C. Andersen, T. J. Bruno, Rapid screening of fluids for chemical stability in organic rankine cycle applications, Industrial and Engineering Chemistry Research 44 (2005) 5560–5566.
  • [3] M. Kane, D. Larrain, D. Favrat, Y. Allani, Small hybrid solar power system, Energy 28 (2003) 1427–1443.
  • [4] A. Schuster, J. Karl, S. Karellas, Simulation of an innovative stand-alone solar desalination system using an organic rankine cycle, International Journal of Thermodynamics 10 (2007) 155.
  • [5] R. L. Powell, Cfc phase-out: have we met the challenge?, Journal of Fluorine Chemistry 114 (2002) 237–250.
  • [6] D. Wei, X. Lu, Z. Lu, J. Gu, Dynamic modeling and simulation of an organic rankine cycle (orc) system for waste heat recovery, Applied Thermal Engineering 28 (2008) 1216–1224.
  • [7] D. Wei, X. Lu, Z. Lu, J. Gu, Performance analysis and optimization of organic rankine cycle (orc) for waste heat recovery, Energy Conversion and Management 48 (2007) 1113–1119.
  • [8] T. Yamamoto, T. Furuhata, N. Arai, K. Mori, Design and testing of the organic rankine cycle, Energy 26 (2001) 239–251.
  • [9] H. D. Madhawa Hettiarachchi, M. Golubovic, W. M. Worek, Y. Ikegami, Optimum design criteria for an organic rankine cycle using low-temperature geothermal heat sources, Energy 32 (2007) 1698–1706.
  • [10] J. P. Mago, M. L. Chamra, K. Srinivasan, C. Somayaji, An examination of regenerative organic rankine cycles using dry fluids, Applied Thermal Engineering 28 (2008) 998–1007.
  • [11] U. Drescher, D. Bruggemann, Fluid selection for the organic rankine cycle (orc) in biomass power and heat plants, Applied Thermal Engineering 27 (2007) 223–228.
  • [12] V. Maizza, A. Maizza,Working fluids in non-steady flows for waste energy recovery systems, Applied Thermal Engineering 16 (1996) 579–590.
  • [13] V. Maizza, A. Maizza, Unconventional working fluids in organic rankine-cycles for waste energy recovery systems, Applied Thermal Engineering 21 (2001) 381–390.
  • [14] G. Angelino, P. Colonnadipaliano, Multicomponent working fluids for organic rankine cycles (orcs), Energy 23 (6) (1998) 449–463.
  • [15] X. Wang, L. Zhao, Analysis of zeotropic mixtures used in low-temperature solar rankine cycles for power generation, Solar Energy 83 (5) (2009) 605–613.
  • [16] A. Borsukiewicz-Gozdur, W. Nowak, Desirable thermophysical properties of working fluids in organic rankine cycle, in: Proceedings European Geothermal Congress, Unterhaching, Germany, 2007.
  • [17] R. Radermacher, Thermodynamic and heat transfer implications of working fluid mixtures in rankine cycles, International Journal of Heat and Fluid Flow 10 (6) (1989) 90–102.
  • [18] X. R. Zhang, H. Yamaguchi, K. Fujima, M. Enomoto, N. Sawada, Theoretical analysis of a thermodynamic cycle for power and heat production using supercritical carbon dioxide, Energy 32 (2007) 591–599.
  • [19] R. Chacartegui, D. Sánchez, J. Muńoz, T. Sánchez, Alternative orc bottoming cycles for combined cycle power plants, Applied Energy 86 (2009) 2162–2170.
  • [20] T. C. Hung, T. Y. Shai, S. K. Wang, A review of organic rankine cycles (orcs) for the recovery of low-grade waste heat, Energy 22 (1997) 661–667.
  • [21] Y. Chen, P. Lundqvist, A. Johansson, P. Platell, A comparative study of the carbon dioxide transcritical power cycle compared with an organic rankine cycle with r123 as working fluid in waste heat recovery, Applied Thermal Engineering 26 (2006) 2142–2147.
  • [22] Y. Dai, J. Wang, L. Gao, Parametric optimization and comparative study of organic rankine cycle (orc) for low grade waste heat recovery, Energy Conversion and Management 50 (2009) 576–582.
  • [23] B. F. Tchanche, G. Papadakis, G. Lambrinos, A. Frangoudakis, Fluid selection for a low-temperature solar organic rankine cycle, Applied Thermal Engineering 29 (2009) 2468–2476.
  • [24] T. C. Hung, Waste heat recovery of organic rankine cycle using dry fluids, Energy Conversion and Management 42 (2001) 539–553.
  • [25] B. Saleh, G. Koglbauer, M. Wendland, J. Fischer, Working fluids for low-temperature organic rankine cycles, Energy 32 (2007) 1210–1221.
  • [26] T. B. Liu, H. K. Chien, C. C. Wang, Effect of working fluids on organic rankine cycle for waste heat recovery, Energy 29 (8) (2004) 1207–1217.
  • [27] A. Rentizelas, S. Karellas, E. Kakaras, I. Tatsiopoulos, Comparative techno-economic analysis of orc and gasification for bioenergy applications, Energy Conversion and Management 50 (3) (2009) 674–681.
  • [28] A. Schuster, S. Karellas, E. Kakaras, H. Spliethoff, Energetic and economic investigation of organic rankine cycle applications, Applied Thermal Engineering 29 (6) (2009) 1809–1817.
  • [29] G. Kosmadakis, D. Manolakos, S. Kyritsis, G. Papadakis, Economic assessment of a two-stage solar organic rankine cycle for reverse osmosis desalination, Renewable Energy 34 (2009) 1579–1586.
  • [30] J. A. Mathias, J. Johnston, J. Cao, D. K. Priedeman, R. N. Christensen, Experimental testing of gerotor and scroll expanders used in, and energetic and exergetic modeling of, an organic rankine cycle, Journal of Energy Resources Technology 131 (3) (2009) 012201–12209.
  • [31] P. D. Duffy, Better Cogeneration through Chemistry: The Organic Rankine Cycle, CEC Inc. in Cincinnati, 2005.
  • [32] B. F. Tchanche, G. Papadakis, G. Lambrinos, A. Frangoudakis, Fluid selection for a low temperature solar organic rankine cycle, Applied Thermal Engineering 29 (11–12) (2009) 2468–2476.
  • [33] R. El Chammas, Combined cycle for hybrid vehicles, in: SAE World Congress & Exhibition 2005, Detroit, MI, USA, 2005.
  • [34] V. Lemort, S. Quoilin, C. Cuevas, V. I. Teodore, J. Lebrun, Development and experimental validation of an organic rankine cycle model, in: Heat Transfer in Components and Systems for Sustainable Energy Technologies, Chambery, France, 2007.
  • [35] K. Gawlik, V. Hassani, Advanced binary cycles: optimum working fluids, in: Energy Conversion Engineering Conference 1997. IECEC-97, Proceedings of the 32nd Intersociety, Vol. 3, Honolulu, HI, USA, 1997, pp. 1809–1814.
  • [36] J. C. Bliem, L. G. Mines, Supercritical binary geothermal cycle experiments with mixed-hydrocarbon working fluids and a near-horizontal in-tube condenser, Tech. Rep. EGG-EP-8800, DOE’s Office of Scientific and Technical Information, Idaho Falls, ID, USA (1989).
  • [37] C. Aprea, A. Maiorino, A. Greco, Global Warming – Impacts and Future Perspective, InTech, 2012, Ch. Chapter 2: The Impact on Global Warming of the Substitution of Refrigerant Fluids in Vapour Compression Plants: An Experimental Study. doi:10.5772/48349.
  • [38] J. M. Calm, D. A. Didion, Trade-offs in Refrigerant Selections: Past, Present, and Future, National Institute of Standards and Technology, 1997.
  • [39] H. Chen, Y. D. Goswami, K. E. Stefanakos, A review of thermodynamic cycles and working fluids for the conversion of low-grade heat, Renewable and Sustainable Energy Reviews 14 (2010) 3059–3067.
  • [40] www.epa.gov/ozone/snap/refrigerants/lists/indproc.html (accessed April 2013).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e29f283c-9086-4af6-833d-0e3d1a7f1605
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.