PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Jacking and energy consumption control over network for jack-up rig: simulation and experiment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Oil and gas projects differ from regular investment projects in that they are frequently large-scale, categorised as vital national projects, highly technological, and associated with significant risks. Drilling rigs are a crucial component of the oil and gas sector and the majority of the systems and equipment aboard drilling rigs are operated automatically. Consequently, it is crucial to address the topic of an advanced control theory for off-shore systems. Network technology connected to control is progressively being used to replace outdated technologies, together with other contemporary technologies. In this study, we examine how to adapt a networked control jacking system to the effects of internal and external disturbances with a time delay, using a Fuzzy controller (FC)-based particle swarm optimisation. To demonstrate the benefit of the proposed approach, the developed Fuzzy Particle Swarm Optimisation (FPSO) controller is compared with the fuzzy controller. Finally, the results from simulations and experiments utilising Matlab software and embedded systems demonstrate the suitability of the proposed approach.
Rocznik
Tom
Strony
89--98
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
  • Artificial Intelligent Transportation Research Group Ho Chi Minh City University of Transport Vietnam
  • Artificial Intelligent Transportation Research Group Ho Chi Minh City University of Transport Vietnam
  • Artificial Intelligent Transportation Research Group Ho Chi Minh City University of Transport Vietnam
  • Artificial Intelligent Transportation Research Group Ho Chi Minh City University of Transport Vietnam
  • Dong An Polytechnic, Vietnam
Bibliografia
  • 1. J.T. Yi, F. Liu, T.B. Zhang, Z.Z. Qiu, and X.Y. Zhang, “Determination of the ultimate consolidation settlement of jack-up spudcan footings embedded in clays,” Ocean Eng., vol. 236, pp. 1-13, 2021, doi: 10.1016/j.oceaneng.2021.109509.
  • 2. Q. Yin, J. Yang, G. Xu, R. Xie, M. Tyagi, L. Li, X. Zhou, N. Hu, G. Tong, C. Fu, and D. Pang, “Field experimental investigation of punch-through for different operational conditions during the jack-up rig spudcan penetration in sand overlying clay,” J. Petroleum Sci. Eng., vol. 195, pp. 1-21, 2020, doi: 10.1016/j. petrol.2020.107823.
  • 3. F. Wang, W. Xiao, Y. Yao, Q. Liu, and C. Li, “An Analytical Procedure to Predict Transverse Vibration Response of Jack-Up Riser under the Random Wave Load,” Shock and Vibration, vol. 2020, pp. 1-9, 2020, doi: 10.1155/2020/5072989.
  • 4. Y. Xie, J. Huang, X. Li, X. Tian, G. Liu, and D. Leng, “Experimental study on hydrodynamic characteristics of three truss-type legs of jack-up offshore platform,” Ocean Eng., vol. 234, pp. 1-15, 2021, doi: 10.1016/j.oceaneng.2021.109305.
  • 5. M. Pająk, L. Muślewski, B. Landowski, and A. Grządziela, “Fuzzy Identification of the Reliability State of the Mine Detecting Ship Propulsion System,” Polish Marit. Res., vol. 26, no. 1, pp. 55-64, 2019, doi: 10.2478/pomr-2019-0007.
  • 6. M. Pashna, R. Yusof, Z.H. Ismail, T. Namerikawa, and S.Yazdani, “Autonomous multi-robot tracking system for oil spills on sea surface based on hybrid fuzzy distribution and potential field approach,” Ocean Eng. vol. 207, pp.1-11, 2020, doi: 10.1016/j.oceaneng.2020.107238.
  • 7. X.K. Dang, V.D. Do, and X.P. Nguyen, “Robust Adaptive Fuzzy Control using Genetic Algorithm for Dynamic Positioning System,” IEEE Access, vol. 8, pp. 222077–222092, 2020, doi: 10.1109/ACCESS.2020.3043453.
  • 8. T. Cepowski, P. Chorab, and D. Łozowicka, “Application of an Artificial Neural Network and Multiple Nonlinear Regression to Estimate Container Ship Length Between Perpendiculars,” Polish Marit. Res., vol. 28, no. 2, pp. 36-45, 2021, doi: 10.2478/ pomr-2021-0019.
  • 9. R. Zagan, I. Paprocka, M.G. Manea, and E. Manea, “Estimation of Ship Repair Time Using the Genetic Algorithm,” Polish Marit. Res., vol. 28, no. 3, pp. 88-99, 2021, doi: 10.2478/ pomr-2021-0036.
  • 10. L. Zhang, J. Sun, and C. Guo, “A Novel Multi-Objective Discrete Particle Swarm Optimisation with Elitist Perturbation for Reconfiguration of Ship Power System,” Polish Marit. Res., vol. 24, no. s3, pp.79-85, 2017, doi: 10.1515/pomr-2017-0108.
  • 11. X. Gu and Q. Shen, “A self-adaptive fuzzy learning system for streaming data prediction,” Information Sci., vol. 579, pp. 623-647, 2021, doi: 10.1016/j.ins.2021.08.023.
  • 12. S. Buzura, V. Dadarlat, B. Iancu, A. Peculea, E. Cebuc, and R. Kovacs, “Self-adaptive Fuzzy QoS Algorithm for a Distributed Control Plane with Application in SDWSN,” 2020 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR), pp. 1-6, 2020, doi: 10.1109/ AQTR49680.2020.9129922.
  • 13. T. Vinu, S. Kumaravel, and S. Ashok, “Fuzzy Controller-Based Self-Adaptive Virtual Synchronous Machine for Microgrid Application,” IEEE Transactions on Energy Conversion, vol. 36, no. 3, pp. 2427-2437, 2021, doi: 10.1109/ TEC.2021.3057487.
  • 14. T.D. Tran, V.D. Do, X.K. Dang, and B.L. Mai, “Improving the Control Performance of Jacking System of Jack-Up Rig Using Self-Adaptive Fuzzy Controller Based on Particle Swarm Optimisation,” 8th EAI International Conference, INISCOM 2022, pp. 184–200, 2022, doi: 10.1007/978-3-031-08878-0_13.
  • 15. C. Wu, J. Liu, X. Jing, H. Li, and L. Wu, “Adaptive Fuzzy Control for Nonlinear Networked Control Systems,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 47, no. 8, pp. 2420-2430, 2017, doi: 10.1109/ TSMC.2017.2678760.
  • 16. M.B. Kadri and S.M.K. Raazi, “Model Free Fuzzy Adaptive Control for Networked Control Systems,” Technology Forces J. Eng. Sci., vol. 2, no. 1, pp. 9-19, 2019.
  • 17. W. Deng, X. Tian, X. Han, G. Liu, Y. Xie, and Z. Li, “Topology optimisation of jack-up offshore platform leg structure,” Proc. Inst. Mech. Engineers M, J. Eng. Maritime Environ, vol. 235, no. 1, pp. 165–175, 2021, doi: 10.1177/1475090220928736.
  • 18. Y.F. Fan and J.H. Wang, “Method to evaluate effect of spudcan penetration on adjacent jacket piles,” Appl. Ocean Res., vol. 106, pp. 1–14, 2021, doi: 10.1016/j.apor.2020.102436.
  • 19. B. Rozmarynowski and W. Jesien, “Spectral Response of Stationary Jack-Up Platforms Loaded by Sea Waves and Wind using Perturbation Method” Polish Marit. Res., vol.28, no. 4, pp.53-62, 2021, doi: 10.2478/pomr-2021-0049.
  • 20. Z. Chao, H. Hong, B. Kaiming and Y. Xueyuan, “Dynamic amplification factors for a system with multiple-degrees-of-freedom,” Earthquake engineering and engineering vibration, vol. 19, no. 2, pp. 363–375, 2000, doi: 10.1007/ s11803-020-0567-9.
  • 21. W. Min and Q. Liu, “An improved adaptive fuzzy backstepping control for nonlinear mechanical systems with mismatched uncertainties,” Automatika, vol. 60, no. 1, pp. 1–10, 2019, doi: 10.1080/00051144.2018.1563357.
  • 22. I. Ullah and D. Kim, “An Improved Optimisation Function for Maximising User Comfort with Minimum Energy Consumption in Smart Homes,” Energies, vol. 10, no. 11, pp. 1818, 2017, doi: 10.3390/en10111818.
  • 23. D.P. Kumar, “Particle Swarm Optimisation: The Foundation,” International Series in Operations Research & Management Science, vol. 306, pp. 97-110, 2021, doi: 10.1007/978-3-030-70281-6_6.
  • 24. 24. V.D. Do, X.K. Dang, and A.T. Le, “Fuzzy Adaptive Interactive Algorithm for Rig Balancing Optimisation,” International Conference on Recent Advances in Signal Processing, Telecommunication and Computing, pp. 143- 148, 2017, doi: 10.1109/SIGTELCOM.2017.7849812.
  • 25. K.S. Ahmed, A.K. Keng, and K.C. Ghee, “Stress and stiffness analysis of a 7-teeth pinion/rack jacking system of an Offshore jack-up rig,” Eng. Failure Analysis, vol. 115, pp. 104623, 2020, doi: 10.1016/j.engfailanal.2020.104623.
  • 26. Z.M. Ghazi, I.S. Abbood, and F. Hejazi, “Dynamic evaluation of jack-up platform structure under wave, wind, earthquake and tsunami loads,” J. Ocean Eng. Sci., vol. 7, pp. 41-57, 2022, doi: 10.1016/j.joes.2021.04.005.
  • 27. H.D. Tran, Z.H. Guan, X.K. Dang, X.M. Cheng, and F.S. Yuan, “A Normalized PID Controller in Networked Control Systems with Varying Time Delays,” ISA Transactions, vol.52, pp. 592-599, 2013, doi: 10.1016/j.isatra.2013.05.005.
  • 28. X.K. Dang, Z.H. Guan, T. Li, and D.X. Zhang, “Joint Smith Predictor and Neural Network Estimation Scheme for Compensating Randomly Varying Time-delay in Networked Control System,” The 24th Chinese Control and Decision Conference, pp. 512-517, 2015, doi: 10.1109/ CCDC.2012.6244077.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e295b6f9-fb19-4947-97f1-fcb8bea31dc4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.