PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

May food become medicine - does carp meat have a chance to become a functional food for people with cardiovascular disease?

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fish consumption is associated with lower risk of cardiovascular disease mortality. The health benefits of fish consumption are attributed to high content of omega-3 polyunsaturated fatty acids (PUFA), especially eicosapentaenoic and docosahexaenoic acid. Animal and human studies have demonstrated that n-3 PUFAs improve the function of the normal and damaged endothelium. It is recommended to eat two servings of fish per week. The aim of the review was to find publications about the nutritional value of carp meat and its possible uses as functional food for patients with cardiovascular disease. A search for open-access original full texts sin PubMed, Google Scholar, Medline Complete database was performed in June 2022. A total of 490 results were found. Eventually 22 articles were included for systematic review. Carp consumption improves plasma lipid profile and therefore it could be considered a functional food. Carp meat is rich in essential amino acids too. The carp culture systems decide about PUFA and protein content in the meat. Carp can be cooked as traditional dishes or carp powder can be added to other dishes to enrich their nutritional value. The recommended method of carp meat preparation to preserve its’ nutritional value is oven baking. Carp meat or carp powder can be used as functional food for patients with cardiovascular diseases.
Rocznik
Tom
Strony
31--44
Opis fizyczny
Bibliogr. 49 poz.
Twórcy
  • Faculty of Medical Sciences, Department of Foreign Languages, Medical University of Lublin, Poland
  • Faculty of Medical Sciences, Department of Hygiene and Epidemiology, Medical University of Lublin, Poland
Bibliografia
  • 1. Innes JK, Calder PC. Marine Omega-3 (N-3) Fatty Acids for Cardiovascular Health: An Update for 2020. Int J Mol Sci. 2020 Feb 18;21(4):1362. doi: 10.3390/ijms21041362. PMID: 32085487; PMCID: PMC7072971.
  • 2. Duyff R.L. Academy of Nutrition and Dietetics Academy of Nutrition and Dietetics Complete Food and Nutrition Guide, 5th Ed. Houghton Mifflin 2017.
  • 3. Jarosz M. Normy żywienia dla populacji Polski. Instytut Żywności i Żywienia. Warszawa 2017(in Polish).
  • 4. Zeniskova H, Gall V. Situational and Prospective Report, Fish (in Czech). Ministry of Agriculture, Prague, 2009, pp 1-46. ISBN 978-80-7084-806-7, ISSN 1211-7692.
  • 5. Trbović D, Marković Z, Milojković-Opsenica D, Petronijević R, Spirić D, Djinović-Stojanović J, Spirić A.Influence of diet on proximate composition and fatty acid profile in common carp (Cyprinus carpio).Journal of Food Composition and Analysis 2013;31(1):75-81.
  • 6. Lofstedt A, de Roos B, Fernandes PG. Less than half of the European dietary recommendations for fish consumption are satisfied by national seafood supplies. Eur J Nutr. 2021 Dec;60(8):4219-4228.
  • 7. Sea Fisheries Institute National Research Institute in Gdynia, Poland, website:www.mir.gdynia.pl (cited on Jan30,2022)
  • 8. Skibniewska KA, Zakrzewski J, Kłobukowski J, Białowąs H, Mickowska B, Guzuir J, Walczak Z, Szarek J. Nutritional Value of the Protein of Consumer Carp Cyprinus carpio L. Czech J. Food Sci. Vol. 31, 2013, No. 4: 313–317.
  • 9. Heydarnejad MS Survival and growth of common carp (Cyprinus carpio L.) exposed to diff erent water pH levels. Turk. J. Vet. Anim. Sci. 2012; 36(3): 245-249.
  • 10. Ed-Idoko J, Solomon SG, AnnunePA, Iber BT, Torsabo D, Ndubisi OC.Breeding of Common Carp (Cyprinus carpio) using Different Approaches.Asian Journal of Biology 2021 12(3):42-49.
  • 11. Wojtyniak B, Goryński P. Health status of Polish population and its determinants. National Institute of Public Health. Warsaw 2020.
  • 12. Shimizu T. Health claims on functional foods: The Japanese regulations and an international comparison. Nutrition Research Reviews. 2003;16(2): 241-252.
  • 13. Martirosyan DM, Singh J. A new definition for functional food by FFC: What makes a new definitione unique? Functional Foods in Health and Disease. 2015;5(6): 209-223.
  • 14. Domínguez Díaz L, Fernández-Ruiz V, Cámara M. The frontier between nutrition and pharma: The international regulatory framework of functional foods, food supplements and nutraceuticals. Critical Reviews in Food Science and Nutrition. 2020; 60(10): 1738-1746.
  • 15. Tangvik RJ, Bruvik FK, Drageset J, Kyte K, Hunskår I. Effects of oral nutrition supplements in persons with dementia: A systematic review. Geriatric Nursing.2021; 42(1):s117-123.
  • 16. Essat M, Archer R, Williams I, Zarotti N, Coates E, Clowes M, the HighCALS group. Interventions to promote oral nutritional behaviours in people living with neurodegenerative disorders of the motor system: A systematic review. Clinical Nutrition. 2020; 39(8), 2547-2556.
  • 17. Coelho MC, Pereira RN, Rodrigues AS, Teixeira JA, Pintado ME. The use of emergent technologies to extract added value compounds from grape by-products. Trends in Food Science and Technology.2020; 106: 182-197.
  • 18. Baumgartner S, Bruckert E, Gallo A, Plat J. The position of functional foods and supplements with a serum LDL-C lowering effect in the spectrum ranging from universal to care-related CVD risk management. Atherosclerosis. 2020; 311: 116-123.
  • 19. Cerda-Opazo P, Gotteland M, Oyarzun-Ampuero FA, Garcia L. Design, development and evaluation of nanoemulsion containing avocado peel extract with anticancer potential: A novel biological active ingredient to enrich food. Food Hydrocolloids. 2021; 111 doi:10.1016/j.foodhyd.2020.106370.
  • 20. Li N, Gao S, Tong J, Yu Y, Zhang Q, Xu C. Probiotics as a functional food ingredient in allergic diseases: Regulation of CD4+ T helper cell differentiation. Critical Reviews in Microbiology.2020; 46(4): 463-474.
  • 21. Dhuique-Mayer C, Gence L, Portet K, Tousch D, Poucheret P. Preventive action of retinoids in metabolic syndrome/type 2 diabetic rats fed with citrus functional food enriched in β-cryptoxanthin. Food and Function.2020; 11(10): 9263-9271.
  • 22. Vezza T, Canet F, de Marañón AM, Bañuls C, Rocha M, Víctor VM. Phytosterols: Nutritional health players in the management of obesity and its related disorders. Antioxidants.2020; 9(12): 1-20.
  • 23. Mraz J, Zajic T, Kozak P, Pickova J, Kacer P, Adamek V, Kralova Lesna I, Lanska V, Adamkova V. Intake of carp meat from two aquaculture production systems aimed at secondary prevention of ischemic heart disease - a follow-up study. Physiol Res. 2017 Apr 5;66(Suppl 1):S129-S137.
  • 24. Bušová M, Kouřimská L, Tuček M. Fatty acids profile, atherogenic and thrombogenic indices in freshwater fish common carp (Cyprinus carpio) and rainbow trout (Oncorhynchus mykiss) from market chain. Cent Eur J Public Health. 2020 Dec;28(4):313-319.
  • 25. El-Beltagi HS, El-Senousi NA, Ali ZA, Omran AA. The impact of using chickpea flour and dried carp fish powder on pizza quality. PLoS One. 2017 Sep 5;12(9):e0183657. doi: 10.1371/journal.pone.0183657. PMID: 28873098; PMCID: PMC5584754.
  • 26. Mahboob S, Al-Ghanim KA, Al-Balawi HFA, Al-Misned F, Ahmed Z. Study on assessment of proximate composition and meat quality of fresk and stored Clarias gariepinus and Cyprinus carpio. Braz J Biol. 2019 ;79(4):651-658.
  • 27. Hussain B, Sultana T, Sultana S, Ahmed Z, Mahboob S. Study on impact of habitat degradation on proximate composition and amino acid profile of Indian major carps from different habitats. Saudi J Biol Sci. 2018;25(4):755-759.
  • 28. Ljubojević D, Radosavljević V, Puvača N, Živkov Baloš M, Đorđević V, Jovanović R, Ćirković M. Interactive effects of dietary protein level and oil source on proximate composition and fatty acid composition in common carp (Cyprinus carpio L.)Journal of Food Composition and Analysis 2015; 37: 44-50.
  • 29. Sobczak M, Panicz R, Eljasik P, Sadowski J, Tórz A, Żochowska-Kujawska J, Barbosa V, Domingues V, Marques A, Dias J. Quality improvement of common carp (Cyprinus carpio L.) meat fortified with n-3 PUFA. Food and Chemical Toxicology 2020;139:111261.
  • 30. Montenegro LF, Descalzo AM, Cunzolo SA, Pérez CD. Modification of the content of n-3 highly unsaturated fatty acid, chemical composition, and lipid nutritional indices in the meat of grass carp (Ctenopharyngodon idella) fed alfalfa (Medicago sativa) pellets. J Anim Sci. 2020;98(4):skaa084. doi: 10.1093/jas/skaa084. PMID: 32185374; PMCID: PMC7149549.
  • 31. Böhm M, Schultz S, Koussoroplis AM,Kainz MJ. Tissue-Specific Fatty Acids Response to Different Diets in Common Carp (Cyprinus carpio L.)PLOS One. 2014;https://doi.org/10.1371/journal.pone.0094759.
  • 32. Zajic T, Mraz J, Sampels S, Pickova J. Fillet quality changes as a result of purging of common carp (Cyprinus carpio L.) with special regard to weight loss and lipid profile. Aquaculture.2013; 400–401: 111-119.
  • 33. Linhartová Z, Krejsa J, Zajic T, Másílko J, Sampels S, Mráz J. Proximate and fatty acid composition of 13 important freshwater fish species in central Europe. Aquaculture International. 2018; 26: 695–711.
  • 34. Trenovszki M , Lebovics V, Müller T, Szabó T, Hegyi Á, Urbányi B, Horváth L, Lugasi A. Survey of fatty acid profile and lipid peroxidation characteristics in comon carp (Cyprinus carpio L.) meat taken from five Hungarian fish farms. Acta Alimentaria. 2011; 40 (1) :153-164.
  • 35. Komprda T, Zelenka J, Fajmonová E, Fialová M, Kladroba D. Arachidonic Acid and Long-Chain n−3 Polyunsaturated Fatty Acid Contents in Meat of Selected Poultry and Fish Species in Relation to Dietary Fat Sources. J. Agric. Food Chem. 2005; 53 (17): 6804–6812.
  • 36. Wang DH, Jackson JR, Twinning C, Rudstam LG, Zollweg- Horan E, Kraft C, Lawrence P, Kothapalli K, Wang Z, Brenna JT. Saturated Branched Chain, Normal Odd-Carbon-Numbered, and n-3 (Omega-3) Polyunsaturated Fatty Acids in Freshwater Fish in the Northeastern United States. J. Agric. Food Chem. 2016; 64 (40): 7512–7519.
  • 37. Jing M, Lin D, Lin J, Li Q, Yan H, Feng X. Mercury, microcystins and omega-3 polyunsaturated fatty acids in farmed fish in eutrophic reservoir: Risk and benefit assessment. Environmental Pollution. 2021; 270: 116047,
  • 38. Paggi Matos A, Castelo Matos A, Siegel Moecke EH. Polyunsaturated fatty acids and nutritional quality of five freshwater fish species cultivated in the western region of Santa Catarina, Brazil. Braz. J. Food Technol. 2019; 22:https://doi.org/10.1590/1981-6723.19318 (cited on 26 Oct 2022).
  • 39. Schneedorferová I, Tomčala A, Valterová I. Effect of heat treatment on the n-3/n-6 ratio and content of polyunsaturated fatty acids in fish tissues. Food Chemistry.2015;176: 205-211.
  • 40. Sobczak M, Panicz R, Eljasik P, Sadowski J, Tórz A, Żochowska-Kujawska J, Barbosa V, Dias J, Marques A. Nutritional value and sensory properties of common carp (Cyprinus carpio L.) fillets enriched with sustainable and natural feed ingredients.Food and Chemical Toxicology.2021;152:112197.
  • 41. Varga D , Müller T, Specziár A, Fébel H, Hancz C, Bázár G, Urbányi B , Szabo A. A note on the special fillet fatty acid composition of the dwarf carp (cyprinus carpio carpio) living in thermal Lake Hévíz, Hungary. Acta Biologica Hungarica.2013;64(1): 34–44.
  • 42. Eljasik P, Panicz R, Sobczak M, Sadowski J, Tórz A, Barbosa V, Marques A, Dias J.Structural and molecular indices in common carp (Cyprinus carpio L.) fed n-3 PUFA enriched diet. Food and Chemical Toxicology. 2021;151:112146.
  • 43. Gladyshev MI, Anishchenko OV, Makhutova ON, Kolmakova OV, Trusova MY, Morgun VN, Gribovskaya IV, Sushchik NN. The benefit-risk analysis of omega-3 polyunsaturated fatty acids and heavy metals in seven smoked fish species from Siberia. Journal of Food Composition and Analysis.2020;90:103489.
  • 44. Trushenski JT, Bowzer JC.Having Your Omega 3 Fatty Acids and Eating Them Too: Strategies to Ensure and Improve the Long-Chain Polyunsaturated Fatty Acid Content of Farm-Raised Fish. In Meester F, Watson RR, Zibadi S.(Eds) Omega-6/3 Fatty Acids. Functions, Sustainability Strategies and Perspectives. Human Press. Springer Science+Business Media New York. 2013:319-339
  • 45. Sobha K, Poonima A, Harini P, Veeraiah K.A study on biochemical changes in the freshwater fish, Catla catla (Hamilton) exposed to the heavy metal toxicant cadmium chloride Kathmandu Univ. J. Sci. Eng. Technol. 2007; 1 (4) (2007):1-11.
  • 46. Antychowicz J, Pękala A , Kramer I.Przyczyny strat w hodowli karpi i ich leczenie. Życie Weterynaryjne . 2017 ; 92(3): 190-200 (in Polish).
  • 47. Igata A. Neurological aspects of methylmercury poisoning in Minamata. Recent Advances in Minamata Disease Studies (eds. Tsubaki T. and Takahashi H.),1986: 41-57. Tokyo: Kodansha Ltd.
  • 48. U.S. Food & Drug Administration. Advice about Eating Fish. https://www.fda.gov/food/consumers/advice-about-eating-fish. (Cited on 2 Nov2022).
  • 49. Zhou H, Liu J, Dai T, Muriel Mundo JL, Tan Y, Bai L, McClements DJ. The gastrointestinal fate of inorganic and organic nanoparticles in vitamin D-fortified plantbased milks. Food Hydrocolloids.2021; 112 doi:10.1016/j.foodhyd.2020.1063.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e28efe97-44b0-475d-9032-f6144557eb27
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.