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ZIG-ZAG FACIAL TOTAL-COLORING
OF PLANE GRAPHS
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Abstract. In this paper we introduce the concept of zig-zag facial total-coloring of plane
graphs. We obtain lower and upper bounds for the minimum number of colors which is
necessary for such a coloring. Moreover, we give several sharpness examples and formulate
some open problems.
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1. INTRODUCTION AND NOTATIONS

All graphs considered in this paper are connected and simple. We use a standard
graph theory terminology according to Bondy and Murty [2]. However, we recall some
important notions.

A plane graph is a particular drawing of a planar graph in the Euclidean plane.
Let G be a plane graph with vertex set V , edge set E and face set F . The boundary
of a face f is the boundary in the usual topological sense. It is a collection of all edges
and vertices contained in the closure of f that can be organized into a closed walk in
G traversing along a simple closed curve lying just inside the face f . This closed walk
is unique up to the choice of initial vertex and direction, and is called the boundary
walk of the face f . We denote the boundary walk of a face f by ∂(f). Two distinct
edges are facially adjacent in G if they are consecutive edges on the boundary walk
of a face of G. Two distinct elements of V ∪ E are facially adjacent in G if they are
incident elements, adjacent vertices or facially adjacent edges.

A facial edge-coloring of G is an edge-coloring such that any two facially adjacent
edges receive different colors. A facial total-coloring of G is a total-coloring such that
any two facially adjacent elements receive different colors. Facial edge-coloring was
first studied for the family of cubic bridgeless plane graphs and for the family of plane
triangulations. Already Tait [11] observed that the Four Color Problem is equivalent to
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the problem of facial 3-edge-coloring of plane triangulations and to the problem of facial
3-edge-coloring of cubic bridgeless plane graphs. It is known that every plane graph
admits a facial edge-coloring with at most four colors, see [6]. Moreover, Czap and
Šugerek [5] proved that every plane graph admits a facial edge-coloring with at most
four colors such that at most three colors appear at each vertex. The concept of facial
total-coloring of plane graphs was introduced by Fabrici, Jendroľ and Vrbjarová [6].
They showed that every bridgeless plane graph admits a facial total-coloring with at
most six colors. Recently, Fabrici, Jendroľ and Voigt [7] strengthen this result. They
proved that every plane graph admits a facial list total-coloring with at most six colors.

In this paper we introduce a zig-zag facial total-coloring (ZFT coloring), which
strengthens the requirement for the facial total-coloring. The paper was motivated by
facial colorings, see [4], and a recent book [9] by Kitaev.

A zig-zag facial k-total-coloring of a plane graph G is a facial total-coloring
c : V ∪ E → {1, . . . , k} such that

c(xi) > max{c(xi−1), c(xi+1)} or c(xi) < min{c(xi−1), c(xi+1)}

for any xi−1xixi+1 ⊆ ∂(f), f ∈ F . In other words,

c(xj) > c(xj+1) < c(xj+2) > c(xj+3) < c(xj+4) > . . .

or
c(xj) < c(xj+1) > c(xj+2) < c(xj+3) > c(xj+4) < . . .

holds for any xjxj+1xj+2xj+3xj+4 · · · ⊆ ∂(f), f ∈ F . For an example see Figure 1.
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Fig. 1. A zig-zag facial 5-total-coloring of the cycle C5

The zig-zag facial total chromatic number of a plane graph G, denoted by χz(G),
is the smallest integer k such that G has a zig-zag facial k-total-coloring.

Note that this parameter is not monotone, i.e. there are graphs G1, G2 such that
G1 ⊆ G2 and χz(G1) < χz(G2) and also exist graphs H1, H2 such that H1 ⊆ H2 and
χz(H1) > χz(H2). For examples see Figure 2.

Lemma 1.1. Let G be a connected plane graph and let c be its ZFT coloring.
If c(v) > c(ev) (resp. c(v) < c(ev)) for a vertex v and an indcident edge ev, then
c(u) > c(eu) (resp. (c(u) < c(eu)) for every vertex u and every indcident edge eu.

Proof. It follows from the fact that every boundary walk is an alternating sequence of
vertices and edges.



Zig-zag facial total-coloring of plane graphs 821

Corollary 1.2. Let G be a connected plane graph and let c be its ZFT coloring with
colors 1, . . . , k. Then 1 or k appears on no vertex (edge).

Proof. Suppose to the contrary that there is a ZFT coloring which uses both colors 1
and k on the vertices (edges) of G. If G contains a vertex (edge) of color 1, then the in-
cident edges (vertices) have greater colors. Then, by Lemma 1.1, the edges (vertices)
incident with a vertex (edge) of color k have colors greater than k, a contradiction.

G1 G2 H1 H2

χz(G1) = 4 χz(G2) = 5 χz(H1) = 5 χz(H2) = 4

Fig. 2. Graphs which show that the parameter χz is not monotone

2. GENERAL BOUNDS

The simplified medial graph of a plane graph G is the graphM(G) with vertex set E(G)
in which two vertices are adjacent if and only if the corresponding edges are facially
adjacent in G. Clearly, the simplified medial graph is planar, moreover, it has a natural
planar embedding. Observe that every proper vertex-coloring of M(G) corresponds
to a facial edge-coloring of G and vice versa. Let χ(G) denote the chromatic number
of G. Since every planar graph G admits a proper vertex-coloring with at most four
colors [1], i.e. χ(G) ≤ 4, we have χ(M(G)) ≤ 4.

Lemma 2.1. Let G be a connected plane graph with at least three vertices and
χ(G) = k. Then χz(G) ≥ k + 2.

Proof. First, let k = 2. Suppose to the contrary that G has a ZFT coloring c with
colors 1, 2, 3. Since 1 < 2 < 3, there is no edge of color 2. Therefore, c uses 1 and 3 on
the edges of G, which contradicts Corollary 1.2.

Now, assume that k ∈ {3, 4}. Corollary 1.2 implies that there is no plane graph
with χ(G) = χz(G) = k. Suppose to the contrary that there is a plane graph H
such that χ(H) = k and χz(H) = k + 1. Let c be a ZFT coloring of H with colors
1, . . . , k+ 1. By Corollary 1.2, c uses either 1, . . . , k or 2, . . . , k+ 1 on the vertices of H.

First assume that there is a vertex v of color 1. In this case the edges incident with
v have greater colors than c(v). Then, by Lemma 1.1, c(u) < c(eu) for every vertex
u and every indcident edge eu. Consequently, every edge incident with a vertex of
color k has color k + 1. Therefore, every vertex of color k has degree one. This implies
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that the chromatic number of H is at most k − 1 (since the leaves can be recolored),
a contradiction.

If we assume that there is a vertex v of color k + 1, then we obtain a contradiction
by analogous arguments.

Lemma 2.2. Let G be a connected plane graph with minimum degree at least three
and χ(G) = k. If every vertex of G has an odd degree, then χz(G) ≥ k + 3.

Proof. Suppose to the contrary that G admits a ZFT coloring c with colors 1, . . . , k+2.
Clearly, at least three colors appear at each vertex, hence

– if k = 2, then every vertex has color either 1 or 4. This contradicts Corollary 1.2;
– if k = 3, then no vertex has color 3. Therefore, G has vertices u, v such that
c(u) ∈ {1, 2} and c(v) ∈ {4, 5}. c(u) ∈ {1, 2} with Lemma 1.1 implies that
c(w) < c(ew) for every vertex w and every incident edge ew, but c(v) ∈ {4, 5}
implies c(w) > c(ew), a contradiction;

– if k = 4, then G has vertices u, v such that c(u) ≤ 3 and c(v) ≥ 4. We obtain
a contradiction by analogous arguments as in the previous case.

Lemma 2.3. Let G be a connected plane graph with at least two vertices and
χ(M(G)) = t. Then χz(G) ≥ t+ 2.

Proof. Corollary 1.2 implies that χz(G) > χ(M(G)). Suppose to the contrary that
there is a connected plane graph H such that χ(M(H)) = t and χz(H) = t+ 1. Let c
be a ZFT coloring of H with colors 1, . . . , t + 1. From Corollary 1.2 it follows that
c uses either 1, . . . , t or 2, . . . , t+ 1 on the edges of H.

Assume that H has an edge of color 1. Then the incident vertices have greater
colors. Then, by Lemma 1.1, the endvertices of every edge of color t have the same
color t+ 1, a contradiction.

If we assume that there is an edge of color t+ 1, then we obtain a contradiction by
analogous arguments.

Lemma 2.4. Let G be a connected plane graph. Then χz(G) ≤ χ(G) + χ(M(G)).

Proof. First we color the vertices of G such that adjacent vertices receive distinct
colors. We use the colors 1, 2, . . . , χ(G). Then we color the edges of G such that facially
adjacent edges receive distinct colors. We use the colors χ(G) + 1, χ(G) + 2, . . . , χ(G) +
χ(M(G)).

Corollary 2.5. If G is a connected plane graph, then χz(G) ≤ 8. Moreover,
χz(G) ≤ 7 if

(a) G is a connected triangle-free plane graph or
(b) G is a plane triangulation.
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Proof. Since χ(G) ≤ 4 and χ(M(G)) ≤ 4 hold for any plane graph G, we have
χz(G) ≤ 8.

(a) follows from Grötzsch’s theorem [8], which states that every triangle-free plane
graph admits a proper vertex-coloring with at most three colors.

For plane triangulations the facial edge-coloring problem is equivalent to the four
color problem, see e.g. the book of Saaty and Kainen [10]. From the Four Color
Theorem it follows (see [10, p. 103]) that the edges of any plane triangulation G can be
colored with three colors so that the edges bounding every face are colored distinctly,
i.e. χ(M(G)) = 3, which implies (b).

3. SHARPNESS RESULTS

From Lemma 2.4 it follows that, if there exists a plane graph G with χz(G) = 8, then
necessarily χ(G) = χ(M(G)) = 4. In the following we determine χz(G) for given χ(G)
and χ(M(G)).

If χ(M(G)) = 2, then we obtain the exact value of χz(G) from Lemma 2.1 and
Lemma 2.4.

Theorem 3.1. Let G be a connected plane graph such that χ(G) = k and χ(M(G)) = 2.
Then χz(G) = k + 2.

Note that there are infinitely many plane graphs such that χ(G) = k with
k ∈ {2, 3, 4} and χ(M(G)) = 2. We can construct an infinite family in the following
way. First we take a 2-connected plane graph H with chromatic number k. From H we
obtain a new plane graph G such that we insert into each face f of size d(f) exactly
d(f) vertices, thereafter we join every vertex of f with exactly one new vertex inserted
to f . If we color the original edges of H with color x and the new edges with color y,
then we obtain a facial edge-coloring of G with two colors. Moreover, the chromatic
number of G is k, because it contains a k-chromatic subgraph.

Thus we may assume that χ(M(G)) ≥ 3. First, let us consider the case χ(G) = 4.

Theorem 3.2. Let G be a connected plane graph such that χ(G) = 4 and χ(M(G)) = 3.
Then 6 ≤ χz(G) ≤ 7. Moreover, the bounds are tight.

Proof. The lower bound six follows from Lemma 2.1 and the upper bound seven follows
from Lemma 2.4. So it suffices to show that the bounds are tight.

Let W be a wheel on (6n+ 3) + 1 vertices, n ≥ 0. Since the boundary of the outer
face is an odd cycle and the central vertex is adjacent with the other vertices we have
χ(W ) = 4. A facial 3-edge-coloring of W can be obtained so that for the edges on the
outer face we use the pattern 1, 2, 3, 1, 2, 3, . . . , 1, 2, 3, i.e. χ(M(W )) = 3. Since each
vertex of W has odd degree, from Lemma 2.2 it follows that χz(W ) ≥ 7.
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For a graph with χ(G) = 4, χ(M(G)) = 3 and χz(G) = 6 see Figure 3.
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Fig. 3. A plane graph G with χ(G) = 4, χ(M(G)) = 3 and its ZFT 6-coloring

Theorem 3.3. Let G be a connected plane graph such that χ(G) = 4 and χ(M(G)) = 4.
Then 6 ≤ χz(G) ≤ 8. Moreover, there are graphs G1 and G2 with the desired properties
such that χz(G1) = 6 and χz(G2) = 7.

Proof. The lower bound six follows from Lemma 2.1 and the upper bound eight follows
from Lemma 2.4.

First we show that there is a plane graph G such that χ(G) = 4, χ(M(G)) = 4 and
χz(G) = 6. The graph G shown in Figure 4 admits a ZFT 6-coloring. Its chromatic
number is four, since it contains K4 (the complete graph on four vertices) as a subgraph.
Since it has a vertex of degree three, every facial edge-coloring uses three different
colors on the incident edges. It is easy to see that no such partial coloring can be
extended to a facial 3-edge-coloring of G.
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Fig. 4. A plane graph G with χ(G) = 4, χ(M(G)) = 4 and its ZFT 6-coloring

Now we show that there are plane graphs such that χ(G) = 4, χ(M(G)) = 4 and
χz(G) = 7. Let W be a wheel on 6n vertices, n ≥ 1. Since the boundary of the outer
face is an odd cycle and the central vertex is adjacent with the other vertices we have
χ(W ) = 4. It is an easy exercise to show that χ(M(W )) = 4. So it is sufficient to
prove that χz(W ) = 7.

From Lemma 2.2 it follows that χz(W ) ≥ 7. A ZFT 7-coloring of W can be defined
in the following way: Color the central vertex with color 4 and the vertices on the
outer face with pattern 1, 2, 3, 2, 3, . . . , 2, 3. Color the edge with endvertices 1 and 2
with color 4 and use the colors 5, 6, 7 for the other edges.

Conjecture 3.4. There is no plane graph G with χz(G) = 8.
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The following results are related to graphs with χ(G) = 3.

Theorem 3.5. Let G be a connected plane graph such that χ(G) = 3 and χ(M(G)) = 3.
Then 5 ≤ χz(G) ≤ 6. Moreover, the bounds are tight.

Proof. The lower bound five follows from Lemma 2.1 and the upper bound six follows
from Lemma 2.4. So it suffices to show that the bounds are tight.

Let C = v1v2 . . . v2k+1 be a cycle on 2k + 1 vertices, k ≥ 1. Clearly, χ(C) = 3
and χ(M(C)) = 3. A ZFT 5-coloring c of C can be defined in the following way:
c(v1) = 1, c(v2i) = 2, c(v2i+1) = 3 for i = 1, 2, . . . , k; c(v1v2) = 3, c(v2iv2i+1) = 4,
c(v2i+1v2i+2) = 5 for i = 1, 2, . . . , k where v2k+2 := v1.

Now let H be a nonbipartite bridgeless cubic plane graph different from K4. By
Brooks’ theorem [3] we have χ(H) = 3. Bridgeless planar cubic graphs admit proper
edge-colorings with three colors (this is an equivalent form of the Four Color Theorem,
see [10]), so χ(M(H)) = 3. From Lemma 2.2 it follows that χz(H) ≥ 6.

Theorem 3.6. Let G be a connected plane graph such that χ(G) = 3 and χ(M(G)) = 4.
Then 6 ≤ χz(G) ≤ 7.

Proof. The lower bound six follows from Lemma 2.3 and the upper bound seven follows
from Lemma 2.4.

Now we show that there are infinitely many plane graphs such that χ(G) = 3,
χ(M(G)) = 4 and χz(G) = 6.

Let W be a wheel on (6n+ 4) + 1 vertices, n ≥ 0. It is easy to see that χ(G) = 3
and χ(M(G)) = 4. A ZFT 6-coloring of W can be defined in the following way: Color
the central vertex with color 6 and the vertices on the outer face with colors 4 and 5
alternately. Then color the edges with endvertices 5 and 6 with color 4 and the edges
with endvertices 4 and 6 with color 3. Finally, color the edges on the outer face with
colors 1 and 2 alternately.

Problem 3.7. Is there a connected plane graph G such that χ(G) = 3, χ(M(G)) = 4
and χz(G) = 7?

For bipartite graphs we obtain the following result immediately from Lemma 2.3
and Lemma 2.4.

Theorem 3.8. If G is a connected bipartite plane graph with χ(M(G)) = t, then
χz(G) = t+ 2.

Note, that there are infinitely many plane graphs with χ(G) = 2 and χ(M(G)) = 3,
for example, bipartite cubic plane graphs.

Problem 3.9. Is there a connected plane graph G such that χ(G) = 2 and
χ(M(G)) = 4?

The cases when χ(G) = 1 or χ(M(G)) = 1 are trivial.
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