Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Fotochromowe włókna polipropylenowe: wpływ właściwości mechanicznych na zachowanie kinetyczne
Języki publikacji
Abstrakty
Spiro [2H-indole-2,3’–[3H]naphth[2,1-b][1,4]oxazine],1,3-dihydro-1,3,3-trimethyl-6’–(1-piperidinyl) was incorporated onto polypropylene and photochromic polypropylene multifilaments produced through the mass coloration technique. Subsequently the polypropylene (PP) filaments were doped with a different concentration of photochromic pigment, and after producing the filaments different drawing ratios were applied. The photochromic colour build was found to be maximum with the highest concentration of dyes as well as with the lowest drawing ratio. Also the colour differences for L*, a*, b* and ΔE* were analysed with respect to the different concentrations and drawing ratios of the filament. The filaments generally showed good stability of photocoloration during the colour measurement till five cycles. The results for the optical density were reduced by increasing the fineness of the filament. In this experimental work, the impact of the drawing ratio on the optical and mechanical properties of these multifilaments were investigated.
W pracy przedstawiono efekty wprowadzenia spiro [2H-indolo-2,3’ ‚– [3H] nafta [2,1-b][1,4] oksazyna], 1,3-dihydro-1,3,3-trimetylo-6’ – (1- piperydynylu) do polipropylenu i fotochromowych polipropylenowych multifilamentów wytwarzanych techniką masowego zabarwienia. Następnie włókna polipropylenowe (PP) domieszkowano różnym stężeniem pigmentu fotochromowego, a po wytworzeniu włókien zastosowano różne współczynniki rozciągania. Stwierdzono, że kolor fotochromowy jest maksymalny przy najwyższym stężeniu barwników, jak również przy najniższym stosunku rozciągania. Analizowano również różnice koloru dla L*, a*, b* i ΔE* w odniesieniu do różnych stężeń i współczynników rozciągania. Włókna na ogół wykazywały dobrą stabilność fotokoloracji podczas pomiaru barwy do pięciu cykli. Wyniki gęstości optycznej zmniejszono przez zwiększenie rozdrobnienia włókna. W pracy zbadano również wpływ współczynnika rozciągania na właściwości optyczne i mechaniczne włókien.
Czasopismo
Rocznik
Strony
19--25
Opis fizyczny
Bibliogr. 32 poz., rys.
Twórcy
autor
- Technical University of Liberec, Department of Material Engineering, Laboratory of Color and Appearance Measurement (LCAM), Czech Republic
autor
- Technical University of Liberec, Department of Material Engineering, Laboratory of Color and Appearance Measurement (LCAM), Czech Republic
autor
- Technical University of Liberec, Department of Material Engineering, Laboratory of Color and Appearance Measurement (LCAM), Czech Republic
Bibliografia
- 1. Crano JC, Guglielmetti R J. Organic Photochromic and Thermochromic Compounds, Kluwer Academic Publishers, New York, USA: New York, USA, 2002; 1; ISBN 0-306-45883-7.
- 2. Tao X. Handbook of smart textiles. In Handbook of Smart Textiles. Xiaoming Tao, Ed.; Springer International Publishing: Singapore, 2015; pp. 1-1058 ISBN 9789814451451.
- 3. Tong Cheng, Tong Lin, Jian Fang, Brady R. Photochromic Wool Fabrics from a Hybrid Silica Coating. In Proceedings of 2006 China International Wool Textile Conference & IWTO Wool Forum, Xi’an, China, 2006; China International Wool Textile Conference & IWTO Wool Forum: Xi/an, China, 2006; pp. 33-37.
- 4. Little AF, Christie RM. Textile applications of photochromic dyes. Part 1: Establishment of a methodology for evaluation of photochromic textiles using traditional colour measurement instrumentation. Color Technol 2010; 126: 157-163, DOI:10.1111/j.1478-4408.2010.00241.x.
- 5. Vikova M, Vik M. Periyasamy AP. Optical properties of photochromic pigment incorporated Polypropylene (PP) filaments:– influence of pigment concentrations & drawing ratio. In Workshop for Ph.D Students of Textile Engineering and Faculty of Mechanical Engineering, Technical University of Liberec. 2015; 3: 140-145.
- 6. Lee SJ, Son YA Suh HJ, Lee DN, Kim SH. Preliminary exhaustion studies of spiroxazine dyes on polyamide fibers and their photochromic properties. Dye Pigment 2006; 69: 18-21. DOI:10.1016/j. dyepig.2005.02.019.
- 7. Son YA, Park YM, Park SY, Shin CJ, Kim SH. Exhaustion studies of spiroxazine dye having reactive anchor on polyamide fibers and its photochromic properties. Dye Pigment 2007; 73, 76-80, DOI:10.1016/j.dyepig.2005.10.012.
- 8. Billah SMR, Christie RM, Morgan KM. Direct coloration of textiles with photochromic dyes. Part 2: The effect of solvents on the colour change of photochromic textiles. Color. Technol. 2008; 124, 229–233. DOI:10.1111/j.1478- 4408.2008.00146.x.
- 9. Vikova M. Photochromic textiles. Heriot-Watt University, Scottish Borders Campus, Edinburgh, UK, 2011.
- 10. Viková M, Vik M. Description of photochromic textile properties in selected color spaces. Text. Res. J. 2015; 85, 609- 620. DOI:10.1177/0040517514549988.
- 11. Periyasamy AP, Vikova M, Vik M. Problems in kinetic measurement of mass dyed Photochromic Polypropylene filaments with respect to different colour space systems. In 4th CIE Expert Symposium on Colour and Visual Appearance; CIE- Austria: Prague, 2016; pp. 325-333.
- 12. Periyasamy AP, Viková M, Vik M. Optical properties of photochromic pigment incorporated into polypropylene filaments. Vlakna a Text. 2016; 23, 171-178.
- 13. Hirte R. Polypropylene fibers – Science and technology. Acta Polym. 1983; 34, 1-594, DOI:10.1002/actp. 1983.010340911.
- 14. Marcinčin A. Dyeing of polypropylene fibers. In Polypropylene: An A-Z reference; Karger-Kocsis, J., Ed.; Springer Netherlands: Dordrecht, 1999; pp. 172- 177 ISBN 978-94-011-4421-6.
- 15. Mukhopadhyay S, Deopura BL, Alagirusamy R. Mechanical properties of polypropylene filaments drawn on varying post spinning temperature gradients. Fibers Polym. 2006, 7, 432-435, DOI:10.1007/BF02875777.
- 16. Mukhopadhyay S, Deopura BL, Alagirusamy R. Studies on production of polypropylene filaments with increased temperature stability. J. Appl. Polym. Sci. 2006; 101, 838-842. DOI:10.1002/ app.23207.
- 17. Mukhopadhyay S, Deopura BL, Alagirusamy R. Effect of drawing different MFI polypropylene filaments on a gradient heater. Autex Res. J. 2006; 6, 136- 141, DOI:10.1533/joti.2005.0043.
- 18. Vikova M, Periyasamy AP, Vik M, Pechová M, Čandová J, Šašková J. Color-changeable sensorial fibres, fastness and dynamic properties. In Asia and Africa Science Platform Program Seminar Series 10; Kyoto Institute of Technology, Japan: Kyoto, 2017.
- 19. Vik M, Vikova M, Periyasamy AP. Influence of SPD on Whiteness value of FWA treated samples. In 21st International Conference LIGHT SVĚTLO 2015, At Brno University of Technology, Czech Republic, Volume: 1; Brno University of Technology: Brno, Czech Republic, 2015; p. 5.
- 20. Vikova M, Vik M. Smart Textile Sensors for Indication of UV radiation. In Autex World Conference-2006; AUTEX publications: Raleigh , North Carolina , USA, 2006; pp. 1-4.
- 21. Viková, M, Vik M. Colour shift photochromic pigments in colour space CIE L*a*b*. Mol. Cryst. Liq. Cryst. 2005; 431, 403-415, DOI:10.1080/15421400590946947.
- 22. Viková M, Periyasamy AP, Vik M, Ujhelyiová A. Effect of drawing ratio on difference in optical density and mechanical properties of mass colored photochromic polypropylene filaments. J. Text. Inst. 2017; 108, 1365-1370. DOI:10.10 80/00405000.2016.1251290.
- 23. Periyasamy AP, Vikova M, Vik M. A review of photochromism in textiles and its measurement. Text. Prog. 2017; 49, 53-136, DOI:10.1080/00405167.2017.1305833.
- 24. Seipel S, Yu J, Periyasamy AP, Viková M, Vik M, Nierstrasz VA. Resource-Efficient Production of a Smart Textile UV Sensor Using Photochromic Dyes: Characterization and Optimization. In Narrow and Smart Textiles; Kyosev, Y., Mahltig, B., Schwarz-Pfeiffer, A., Eds.; Springer International Publishing: Cham, 2018; pp. 251-257 ISBN 978-3-319-69050-6.
- 25. Seipel S, Yu J, Periyasamy AP, Viková M, Vik M, Nierstrasz VA. Characterization and optimization of an inkjet-printed smart textile UV-sensor cured with UV-LED light. IOP Conf. Ser. Mater. Sci. Eng. 2017, 254, 1-4, DOI:10.1088/1757- 899X/254/7/072023.
- 26. Seipel S, Yu J, Periyasamy AP, Viková M, Vik M, Nierstrasz VA. Inkjet printing and UV-LED curing of photochromic dyes for functional and smart textile applications. RSC Adv. 2018; 8, 28395- 28404, DOI:10.1039/C8RA05856C.
- 27. Vikova M, Vik M. Alternative UV Sensors Based on Color-Changeable Pigments. Adv. Chem. Eng. Sci. 2011; 01, 224-230, DOI:10.4236/aces.2011.14032.
- 28. Krohm F, Kind J, Savka R, Alcaraz Janßen M, Herold D, Plenio H, Thiele CM, Andrieu-Brunsen A. Photochromic spiropyran- and spirooxazine-homopolymers in mesoporous thin films by surface initiated ROMP. 00000 2016; 4: 4067-4076. DOI:10.1039/C5TC04054J.
- 29. Hou, L.; Schmidt, H.; Hoffmann, B.; Mennig, M. Enhancement of the Photochromic Performance of Spirooxazine in Sol-Gel Derived Organic-Inorganic Hybrid Matrices by Additives. J. Sol- Gel Sci. Technol. 1997; 8: 927-929. DOI:10.1007/BF02436962.
- 30. Little AF, Christie RM. Textile applications of photochromic dyes. Part 3: Factors affecting the technical performance of textiles screen-printed with commercial photochromic dyes. Color. Technol. 2011; 127: 275-281. DOI:10.1111/ j.1478-4408.2011.00307.x.
- 31. Vikova M, Vik M. The determination of absorbance and scattering coefficients for photochromic composition with the application of the black and white background method. Text. Res. J. 2015; 85: 1961- 1971. DOI:10.1177/0040517515578332.
- 32. Vikova M, Vik M. Photochromic Textiles and Measurement of Their Temperature Sensitivity. Res. J. Text. Appar. 2014; 18: 15-21. DOI:10.1108/RJTA-18-03- 2014-B002.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e28d9fcc-f4bb-4543-8ec6-a11dbaa4d2b7