Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper aims to comprehensively understand the shear behavior of fiber-reinforced polymer (CFRP) bars reinforced ultra-high-performance fiber-reinforced concrete (UHPFRC) beams, and develop a calculation model to predict the shear capacity. The crucial parameters under consideration are the orientation and volume fraction of steel fibers. A magnetic field fiber orientation setup was utilized to achieve the desired orientation. The results indicated that all UHPFRC beams demonstrated shear failure, showing clear instances of both beam action and arch action throughout the failure progression. By orienting the steel fibers at an angle of 60° relative to the longitudinal axis of the beams, the average shear capacity increases by 23.51% compared to that of the beams with random distributed steel fibers because the steel fibers are almost perpendicular to the diagonal shear cracks. Increasing the fiber volume fraction from 1.5% to 2.0% led to a significant maximum increase in the average shear capacity, reaching 31.73%. Moreover, the larger orientation angles and higher volume fraction of steel fibers contributed to improved ductility, reaching a maximum of 124.0%. Finally, a highly accurate model based on the fiber-matrix discrete approach was formulated. The proposed model showed a slight overestimation of shear capacity, with most values not exceeding 10%, and a standard deviation below 6.22%.
Czasopismo
Rocznik
Tom
Strony
art. no. e1, 2024
Opis fizyczny
Bibliogr. 36 poz., rys., wykr.
Twórcy
autor
- School of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China
autor
- School of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi University, Nanning 530004, China
autor
- School of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China
autor
- School of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China
autor
- School of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China
autor
- School of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China
Bibliografia
- 1. Tran TT, Pham TM, Huang ZJ, Chen WS, Hao H, Elchalakani M. Impact response of fibre reinforced geopolymer concrete beam swith BFRP bars and stirrups. Eng Struct. 2021;231: 111785.
- 2. Yoo DY, Yoon YS. A review on structural behavior, design, and application of ultra-high-performance fiber-reinforced concrete. Int J Concr Struct Mater. 2016;10(2):125–42.
- 3. Ke L, Zhu FR, Chen Z, Feng Z, Zhou JL, Li YL. Fatigue failure mechanisms and probabilistic S-N curves for CFRP-steel adhe-sively bonded joints. Int J Fatigue. 2023;168: 107470.
- 4. Ke L, Liang LM, Feng Z, Li CX, Zhou JL, Li YL. Bond performance of CFRP bars embedded in UHPFRC incorporating orientation and content of steel fibers. J Build Eng. 2023:73106827.
- 5. Ferrier E, Confrere A, Michel, L, Chanvillard G. Bernardi S. Shear behaviour of new beams made of UHPC concrete and FRPrebar. COMPOS PART B-ENG. 2016;90:1–13.
- 6. Zhou C, Wang J, Jia W, Fang Z. Torsional behavior of ultra-high performance concrete (UHPC) rectangular beams without steel reinforcement: Experimental investigation and theoretical analysis. Compos Struct. 2022;299116022.
- 7. Tang Y, Huang Z, Chen Z, Chen M, Zhou H, Zhang H. Novel visual crack width measurement based on backbone double-scalefeatures for improved detection automation. Eng Struct. 2023;274115158.
- 8. Islam MM, Zhang Q, Jin QX. A review of existing codes and standards on design factors for UHPC placement and fiber orientation. Constr Build Mater. 2022;345: 128308.
- 9. Bunje K, Fehling E. About shear force and punching shear resistance of structural elements of ultra high performance concrete. Int Symp on UHPC. 2004;5(3):401–11.
- 10. Bertram G, Hegger J. Shear behavior of pretensioned UHPC beams-tests and design. Proceedings Hiperm at 2012 3rd International Symposium on UHPC and Nanotechnology for High Performance Construction Materials. Kassel. Germany. 2012:493–500.
- 11. Yoo DY, Banthia N, Yoon YS. Flexural behavior of ultra-high-performance fiber-reinforced concrete beams reinforced with GFRP and steel rebars. Eng Struct. 2016;111:246–62.
- 12. Wang JQ, Qi JN. Unified shear strength computation model for reinforced concrete beams with and without stirrups. China Civil Engineering Journal. 201346;7:47–57.
- 13. Qi JN, Wang JQ, Ma JZ, Tong T. Shear behavior of externally prestressed concrete beams with draped tendons. ACI Struct J.2016;113(4):677–88.
- 14. Ashour SA, Hasanain GS, Wafa FF. Shear behavior of high-strength fiber reinforced concrete beams. ACI Struct J.1992;89(2):176–83.
- 15. El-Niema E. Reinforced concrete beams with steel fibers under shear. ACI Struct J. 1991;188(2):178–83.
- 16. Ke L, Liang LM, Zhou JL, Li C, Chen C, Li YL. Shear performance of stirrup corroded RC beams: effects of strengthening interventions and corrosion rates. Struct Concrete.2023;24(2):3077–90.
- 17. Kwak YK, Eberhard MO, Kim WS. Shear strength of steel fiber-reinforced concrete beams without stirrups. ACI Struct J.2002;99(4):530–8.
- 18. Slater E, Moni M, Alam MS. Predicting the shear strength of steel fiber reinforced concrete beams. Constr Build Mater. 2012;26:423–36.
- 19. Lee SJ, Cho J, Vecchio FJ. Analysis of steel fiber-reinforced concrete elements subjected to shear. ACI Struct J.2016;113(2):276–97.
- 20. Susetyo J, Gauvreau P, Vecchio FJ. Steel fiber-reinforced concrete panels in shear: analysis and modeling. ACI Struct J. 2013;110(2):285–95.
- 21. T/CECS 10107–2020. Technical requirements for ultra-high-performance concrete. Beijing: China Association for Engineering Construction Standardization; 2020.
- 22. GB/T 50081–2019. Standard for test methods of concrete physical and mechanical properties. Beijing: Ministry of Construction of the People's Republic of China; 2019.
- 23. GB/T 26743–2011. Fiber reinforced composite bars for civil engineering. Beijing: General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, 2011.
- 24. GB/T 50152–2012. Standard for test method of concrete structures. Beijing: Ministry of Housing and Urban-Rural Construction of the People's Republic of China; 2012.
- 25. Švec O, Žirgulis G, Bolander JE, Stang H. Influence of formwork surface on the orientation of steel fibres within self-compacting concrete and on the mechanical properties of cast structural elements. Cem Concr Compos. 2014;50:60–72.
- 26. Deeb R, Karihaloo BL, Kulasegaram S. Reorientation of short steel fibres during the flow of self-compacting concrete mix and determination of the fibre orientation factor. Cem Concr Res. 2014;56:112–20.
- 27. Ferrara L, Ozyurt N, Prisco DM. High mechanical performance of fibre reinforced cementitious composites: the role of “casting-flow induced” fibre orientation. Mater Struct. 2011;44(1):109–28.
- 28. Zhou B, Uchida Y. Influence of flowability, casting time and formwork geometry on fiber orientation and mechanical properties of UHPFRC. Cem Concr Res. 2017;95:164–77.
- 29. Chen BC, Zhou JL, Sennah DK, Nuti C. Shear performances of reinforced ultra-high performance concrete short beams. Eng Struct. 2023;277: 115407.
- 30. Mukhtar F, Deifalla A. Shear strength of FRP reinforced deep concrete beams without stirrups: test database and a critical shearcrack-based model. Compos Struct. 2023;307: 116636.
- 31. Mu R, Dong RX, Liu HQ, Chen HY, Cheng QG, Fan CH. Preparation of aligned steel-fiber-reinforced concrete using a magnetic field created by the assembly of magnetic pieces. Crystals. 2021;11(7):837.
- 32. Keheyroddin A, Naderpour H, Sharbatdar MK. Plastic hingerotation capacity of reinforced concrete beams. Int J Civ Eng.2007;141(2):30–47.
- 33. Wang JQ, Qi JN, Zhang J. Optimization method and experimental study on the shear strength of externally prestressed concrete beams. Adv Struct Eng. 2014;17(4):607–15.
- 34. Qi JN, Cheng Z, Ma ZJ, Wang JQ, Liu JP. Bond strength of reinforcing bars in ultra-high performance concrete: experimental study and fiber-matrix discrete model. Eng Struct. 2021; 248:113290.
- 35. Qi JN, Ma ZJ, Wang JQ. Shear strength of UHPFRC beams: mesoscale fiber-matrix discrete model. J Struct Eng.2017;143(4):04016209.
- 36. Wille K, Naaman AE. Effect of ultra-high-performance concreteon pullout behavior of high-strength brass-coated straight steelfibers. ACI Mater J. 2013;110(4):451–61.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e2843385-6108-4c11-85b1-9ad20f8b65b4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.