PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Positive solutions of a singular fractional boundary value problem with a fractional boundary condition

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
For α ∈ (1,2] the singular fractional boundary value problem [formula] satisfying the boundary conditions [formula] where β ∈ (0,α - 1], μ ∈ (0,α - 1], and [formula] are Riemann-Liouville derivatives of order α, β, and μ respectively, is considered. Here ƒ satisfies a local Carathéodory condition, and ƒ (t, x, y) may be singular at the value 0 in its space variable x. Using regularization and sequential techniques and Krasnosel’skii’s fixed point theorem, it is shown this boundary value problem has a positive solution. An example is given.
Rocznik
Strony
421--434
Opis fizyczny
Bibliogr. 12 poz.
Twórcy
autor
  • Nova Southeastern University Department of Mathematics Fort Lauderdale, FL 33314 USA
  • Eastern Kentucky University Department of Mathematics and Statistics Richmond, KY 40475 USA
Bibliografia
  • [1] R.P. Agarwal, D. O’Regan, S. Stanek, Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations, J. Math. Anal. Appl. 371 (2010), 57–68.
  • [2] K. Diethelm, The Analysis of Fractional Differential Equations: An Application--Oriented Exposition Using Differential Operators of Caputo Type, Springer, 2010.
  • [3] P.W. Eloe, J.W. Lyons, J.T. Neugebauer, An ordering on Green’s functions for a familyof two-point boundary value problems for fractional differential equations, Commun. Appl. Anal. 19 (2015), 453–462.
  • [4] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, vol. 204, Elsevier Science B.V., Amsterdam, 2006.
  • [5] M.A. Krasonsel’skii, Topological Methods in the Theory of Nonlinear Integral Equations, Translated by A.H. Armstrong, translation edited by J. Burlak, A Pergamon Press Book, The Macmillan Co., New York, 1964.
  • [6] H. Mâagli, N. Mhadhebi, N. Zeddini, Existence and estimates of positive solutions for some singular fractional boundary value problems, Abstr. Appl. Anal. (2014), Art. ID 120781.
  • [7] K.S. Miller, B. Ross, A Introduction to the Fractional Calculus and Fractional Differetial Equations, A Wiley-Interscience Publication, John Wiley & Sons, New York, 1993.
  • [8] I. Podlubny, Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solutions and Some of Their Applications, Mathematics in Science and Enginnering, vol. 198, Academic Press, San Diego, 1999.
  • [9] S. Stanek, The existence of positive solutions of singular fractional boundary value problems, Comput. Math. Appl. 62 (2011), 1379–1388.
  • [10] X. Xu, D. Jiang, C. Yuan, Multiple positive solutions for the boundary value problem of a nonlinear fractional differential equation, Nonlinear Anal. 71 (2009), 4676–4688.
  • [11] C. Yuan, D. Jiang, X. Xu, Singular positone and semipositone boundary value problems of nonlinear fractional differential equations, Math. Probl. Eng. (2009), Art. ID 535209.
  • [12] X. Zhang, C. Mao, Y. Wu, H. Su, Positive solutions of a singular nonlocal fractional order differetial system via Schauder’s fixed point theorem, Abstr. Appl. Anal. (2014), Art. ID 457965.
Uwagi
EN
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e27cd0d5-ee84-4b2b-b6d6-7b92babff4b2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.