PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cavitation erosion resistance influence of material properties

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The cavitation erosion is the phenomena that causes degradation of fluid flow machinery components due to repetitive implosion of cavitation bubbles adjacent to the solid surface. Cavitation erosion is a complex phenomenon, which includes not only hydrodynamic factors of liquid, but also properties of erodible material e.g. microstructure, hardness or Young modulus. In order to reduce the negative impact of erosion on machine components, there are many methods to increase cavitation erosion resistance. The paper discusses the correlations between structural and mechanical properties and the resistance to cavitation erosion (CER) of pure materials, their alloys and coatings. Methods to increase CER have also been described - using heat / thermo-chemical treatment and application of coatings by various methods.
Rocznik
Strony
18--34
Opis fizyczny
Bibliogr. 73 poz., rys.
Twórcy
  • Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdansk, Poland
  • Gdańsk University of Technology, Faculty of Mechanical Engineering, 11/12 Narutowicza, 80-233 Gdansk, Poland
autor
  • Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdansk, Poland
Bibliografia
  • 1 . Chahine G. L., Franc J.-P., Karimi A.: Advanced Experimental and Numerical for Cavitation Erosion Prediction. Kim K., Chahine G. L., Franc J.-P., Karimi A. [eds], Springer International Publishing, Dordrecht, 2014.
  • 2 . Krella A. K.: Influence of cavitation intensity on X6CrNiTi18-10 stainless steel, Wear 258 (2005) 604-613.
  • 3 . Heymann F. J.: Erosion by liquids – The mysterious murderer of metals, Mach. Des. 1970.
  • 4 . Kumar P., Saini R. P.: Study of cavitation in hydro turbines – A review, Renewable and Sustainable Energy Reviews 14 (2010) 374-383.
  • 5 . Brennen Ch.E.: Cavitation and bubble Dynamics. Oxford University Press, New York, 1977.
  • 6 . Hubballi B. V., Sondur V. B.: A Review on the prediction on cavitation erosion inception in hydraulic control valves, IJETAE 3.1 (2013) 110-119.
  • 7 . Ozonek J.: Application of Hydrodynamic Cavitation in Environmental Engineering. Taylor & Francis Group, London, 2012.
  • 8 . Gogate P. R., Kabadi A. M.: A review of applications of cavitation in biochemical engineering/biotechnology, Biochemical Engineering Journal 44 (2009) 60-72.
  • 9 . Karimi A., Martin J. L.: Cavitation erosion of materials. International Metals Reviews 31 (1986) 1-26.
  • 10 . Espitia L. A., Dong H., Li X. Y., Pinedo C. E., Tschiptschin A. P.: Cavitation erosion resistance and wear mechanisms of active Green low temperature plasma nitrided AISI 410 martensitic stainless steel, 332-333 (2015) 1070-1079.
  • 11 . Jasionowski R., Zasada D., Grabin J.: Mechanizm niszczenia stopów intermetalicznych poddanych erozji kawitacyjnej, Zeszyty Naukowe Akademii Morskiej w Szczecinie, 5 (2005) 257-266.
  • 12 . Feller H. G., Kharrazi Y.: Cavitation erosion of metals and alloys, Wear 93 (1984) 249-260.
  • 13 . Thiruvengadam A., Waring S. J.: Mechanical properties of metals and their cavitation damage resistance, Journal of Ship Res 10 (1966) 1-9.
  • 14 . Lin C., Zhao Q., Zhao X., Yang Y.: Cavitation erosion of metallic materials. IJGE 4 (2018) 1-8.
  • 15 . Richman R. H., McNaughton W. P.: Correlation of cavitation properties of metals erosion behavior with mechanical properties of metals. Wear 140 (1990) 63-82.
  • 16 . Chang S. C., Weng W. H., Chen H. C., Lin S. J., Chung P. C. K.: The cavitation erosion of Fe-Mn-Al. Alloys. Wear (181-183 (1995) 511-515.
  • 17 . Kwok C. T., Man H. C., Cheng F. T.: Cavitation erosion and damage mechanisms of alloys with duplex structures. Materials Science and Engineering A242 (1998) 108-120.
  • 18 . Tzanakis I., Bolzoni L., Eskin D. G., Hadfield M.: Evaluation of cavitation erosion behavior of commercial steel grades used in the design of fluid machinery. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science 48 (2017) 2193-2206.
  • 19 . Hattori S., Ishikura R., Zhang Q.: Construction of database on cavitation erosion and analyses of carbon steel data. Wear 257 (2004) 1022-1029.
  • 20 . Hattori S., Ishikura R.: Revision of cavitation erosion database and analysis of stainless steel data. Wear 268 (2010) 109-116.
  • 21 . Howard, R.L., Ball, A.: Mechanisms of cavitation erosion of TiAl -based titanium alumine intermetalic alloys. Acta Metallurgica 44 (1996) 3157-3168
  • 22 . Hattori S., Kitagawa T.: Analysis of cavitation erosion resistance of cast iron and nonferrous metals based on database and comparison with carbon steel data. Wear 269 (2010) 443–448
  • 23 . Szkodo M.: Erozja kawitacyjna materiałów konstrukcyjnych, Gdańsk, 2008.
  • 24 . Garcia R., Hammit F. G.: Cavitation damage and correlations with material and fluid properties. Journal of Basic Enineering 89 (1967) 753-763.
  • 25 . Bregliozzi G., Di Schino A., Ahmed S. I. U., Kenny J. M., Haefke H.: Cavitation wear behaviour of austenitic stainless steel with different grain sizes. Wear 258 (2005) 503-510.
  • 26 . Chauhan A. K., Goel D. B., Prakash S.: Erosion behavior of hydroturbine steel. Bulletin of Materials Science 31 (2008) 115-120.
  • 27 . Niederhofer P., Huth S.: Cavitation erosion resistance of high interstinal CrMnCN austenitic stainless steel. Wear 301 (2013) 457-466.
  • 28 . Thapliyal S., Dwivedi D. K.: On cavitation erosion behavior of friction processed surface of cast nickel aluminium bronze. Wear 376-377 (2017) 1030-1042.
  • 29 . Wantang F., Yangzeng Z., Xiaokui H.: Resistance of a high nitrogen austenitic steel to cavitation erosion. Wear 249 (2001) 788-791.
  • 30 . Sreedhar B.K., Albert S. K., Pandit A.B.: Cavitation damage and measurements – A review. Wear 372-373 (2017) 177-196.
  • 31 . Peng K., Kang C., Li G., Matsuda K., Soyama H.: Effect of heat treatment on the cavitation erosion resistance of stainless steel. Materials and Corrosion (2017) 1-9.
  • 32 . Nair R. B., Arora H.S., Mukherjee S., Singh S., Grewal H. S.: Exceptionally high cavitation erosion and corrosion resistance of a high entropy alloy. Ultrasonics Sonochemistry 41 (2018) 252-260.
  • 33 . Mann B.S.: Boronizing of cast martensitic chromium nickel stainless steel and its abrasion and cavitation-erosion behaviour. Wear 208 (1997) 125–131.
  • 34 . Singh R., Tiwari S. K., Mishra S. K.: Cavitation erosion In hydraulic turbine components and mitigation by coatings: current status and future needs. Materials Engineering and Performance 21 (2012) 1539-1551.
  • 35 . Będkowski W., Gasiak G., Lachowicz C., Lichtarowicz A., Łagoda T., Macha E.: Relations between cavitation erosion resistance of materials and their fatigue strength under random loading. Wear 230 (1999) 201-209.
  • 36 . Knapp R. T., Daily J. W., Hammit F.G.: Cavitation, McGraw-Hill, New York 1970.
  • 37 . Richman R. H., McNaughton W. P.: A metallurgical approach to improved cavitation-erosion resistance. Materials Engineering And Performance 6 (1997) 633-641.
  • 38 . Chen W., Gu C., Zhao K., Shen F.: Correlation of cavitation erosion resistance and mechanical properties of some engineering steels. Materials Science 41 (2006) 2151-2153.
  • 39 . Hattori S., Takamoto I.: Cavitation erosion resistance of plastics. Wear 271 (2011) 1103-1108.
  • 40 . Fortes Patella R., Choffat T., Jean-Luc Reboud J-L, Archer A.: Mass loss simulation in cavitation erosion: Fatigue criterion approach. Wear 300 (2013) 205–215.
  • 41 . Krella A.K., Krupa A.: Effect of cavitation intensity on degradation of X6CrNiTi18-10 stainless steel. Wear 408–409 (2018) 180–189.
  • 42 . Di Schino A., Barteri M., Kenny J. M.: Effects of grain size on the properties of a low nickel austenitic stainless steel. Journal of Materials Science 38 (2003) 4725-4733.
  • 43 . Wang Z., Zhang X., Cheng J., Lin J., Zhou Z.: Cavitation erosion resistance of Fe-based amorphous/nanocrystal coatings prepared by high-velocity arc spraying. Journal of Thermal Spray Technology 23 (2014) 742-749.
  • 44 . Hajian M., Abdollah-Zadeh A., Razaei-Nejad S. S., Assadi H., Hadavi S. M. M., Chung K., Shokouhimehr M.: Improvement in cavitation erosion resistance of AISI 316 L stainless steel by friction stir processing. Applied Surface Science 308 (2014) 184-192.
  • 45 . Liu W., Zheng Y. G., Liu C. S., Yao Z. M., Ke W.: Cavitation erosion behaviour of Cr-n-N stainless steel in comparison with 0Cr13Ni5Mo stainless steel. Wear 254 (2003) 713-722.
  • 46 . Lin J., Wang Z., Cheng J., Kang M. Fu X., Hong S.: Effect of initial surface roughness on cavitation erosion resistance of arc-spayed Fe-based amorphous/nanocrystalline coating. Coatings 7 (2017) 200-209.
  • 47 . Xiaojun Z., Procopiak L.A.J., Souza N. C., d’Oliveira A.S.C.M.: Phase transformation during cavitation erosion of Co stainless steel. Materials Science and Engineering A 358 (2003) 199-2014.
  • 48 . Li D. G., Chen D. R., Liang P.: Enhancement of cavitation erosion resistance of 316L stainless steel by adding molybdenum. Ultrasonics Sonochemistry 35 (2017) 375-381.
  • 49 . Allenstein A. N., Lepienski C. M., Buschinelli A. J. A., Brunatto S. F.: Improvement of the cavitation erosion resistance for low-temperature plasma nitrided Ca-6NM martensitic stainless steel. Wear 309 (2014) 159-165.
  • 50 . Verma S., Dubey P., Selokar A. W., Dwivedi D. K., Chandra R.: Cavitation erosion behaviour of nitrogen ion implanted 13Cr4Ni steel. Transaction of the Indian Institute of Metals 70 (2017) 957-965.
  • 51 . Lamana M. S. Pukasiewicz A. G. M., Sampath S.: Influence of kobalt kontent and HVOF deposition process on the cavitation erosion resistance of WC-Co coatings. Wear 398-399 (2017) 209-219.
  • 52 . Lavigne S., Pougoum F., Savoie S., Martinu L., Klemberg-Sapiecha E., Schulz R.: Cavitation erosion behaviour of HVOF CaviTec Coatings. Wear 386-387 (2017) 90-98.
  • 53 . Kumar A., Sharma A., Goel S. K.: Erosion behaviour of WC-10Co-4Cr on 23-8-N nitronic steel by HVOF thermal spraying. Applied Surface Science 370 (2016) 418-426.
  • 54 . Momeni S., Tillmann W., Pohl M.: Composite cavitation resistant PVD coatings based on NiTi thin films. Materials and Design 110 (2016) 830-838.
  • 55 . Krella A.: An experimental parameter of cavitation erosion resistance for TiN coatings. Wear 270 (2011) 252–257.
  • 56 . Krella A.: Cavitation erosion of TiN and CrN coatings deposited on different substrates. Wear 297 (2013) 992-997.
  • 57 . Stella J., Schüller E., Heßing C., Hamed O. A., Pohl M., Stöver D.: Cavitation erosion of plasma-sprayed NiTi coating. Wear 260 (2006) 1020-1027.
  • 58 . Wang Y., Liu J., Kang N., Darut G., Poirier T., Stella J., Liao H., Planche M. P.: Cavitation erosion of plasma-sprayed CoMoCrSi coatings. Tribology International 102 (2016) 429-435.
  • 59 . Godoy C., Mancosu R. D., Lima M. M., Brandao D., Housden J., Avelar-Batista J. C.: Influence of plasma nitriding and PAPVD Cr1-xNx coating on the cavitation erosion resistance of an AISI 1045 steel. Surface Coatings Technology 200 (2006) 5370-5378.
  • 60 . Kim J., Lee M.: A study on cavitation erosion and corrosion behaviour of Al-, Zn-, Cu-, and Fe-based coatings prepared by arc spraying. Journal of Thermal Spray Technology 19 (2010) 1224-1230.
  • 61 . Lo K. H., Cheng F. T., Kwok C- T., Man H. C.: Improvement of cavitation erosion resistance of AISI 316 stainless steel by laser surface alloying using fine WC powder. Surface and Coatings Technology 165 (2003) 258-267.
  • 62 . Wu Y., Hong S., Zhang J., He Z., Guo W., Wang Q., Li G.: Microstructure and cavitation erosion behaviour of WC-Co-Cr coating 1Cr18Ni9Ti stainless steel by HVOF thermal starying. International Journal of Refractory Metals and Hard Materials 32 (2012) 21-26.
  • 63 . Taillon G., Pougoum F., Lavigne S., Ton-That L., Schulz R., Bousser E., Savoie S., Martinu L., Klemberg-Sapiecha E.: Cavitation erosion mechanisms in stainless steel and in composite metal-ceramic HVOF coating. Wear 364-365 (2016) 201-210.
  • 64 . Wang Y., Stella J., Darut G., Poirier T., Liao H., Planche M. P.: APS prepared NiCrBSi-YSZ composite coatings for protection against cavitation erosion. Journal of Alloys and Compounds 699 (2017) 1095-1103.
  • 65 . Zhang H., Gong Y., Chen X., McDonald A., Li H.: A comparative study of cavitation erosion resistance of several HVOF-sprayed coatings in deionized water and artificial seawater. Journal of Thermal Spray Technology 28 (2019) 1060-1071.
  • 66 . Hou G., Ren Y., Zhang X., Dong F., An Y., Zhao X., Zhou H., Chen J.: Cavitation erosion mechanisms in Co-based coatings exposed to seawater. Ultrasonics -Sonochemistry 60 (2020) 1047-59.
  • 67 . Szala M., Walczak M., Pasierbiewicz K., Kamiński M.: Cavitation erosion and sliding wear mechanisms of AlTiN and TiAlN films deposited on stainless steel substrate. Coatings 9 340 (2019).
  • 68 . Deng W., Zhao X., Ren Y., Hao E., Han J., An Y., Zhou H., Chen J.: Influence of epoxy resin on the microstructure and cavitation erosion of as-sprayed 8YSZ coating. Ceramics International 45 (2019) 5693-5702.
  • 69 . Krella A.K.: An approach to evaluate the resistance of hard coatings to shock loading. Surface & Coatings Technology 205 (2010) 2687–2695.
  • 70 . Rudolf P., Julis M., Klakurkova L., Gejdos P., Hudec M.: Cavitation erosion testing of different cavitation-resistant materials and coatings using the cavitating jet method. IOP Conf. Series: Earth and Enviromental Science 240 (2019) 57-62.
  • 71 . Ding H., Jiang S., Xu J.: Cavitation erosion resistance of ZrC nanoceramic coating. Journal of Engineering Tribology (2019) 1-9.
  • 72 . Qiao L., Wu Y., Hong S., Zhang J., Shi W., Zheng Y.: Relationships between spray parameters, microstructure and ultrasonic cavitation erosion behavior of HVOF sprayed Fe-based amphous/nanocrystalline coating. Ultrasonics – Sonochemistry 39 (2017) 39-46.
  • 73 . Matikainen V., Peregrina S. R., Ojala N., Koivuluoto H., Schubert J., Houdkova S., Vuoristo P.: Erosion wear performance of WC-10Co4Cr and Cr3C2-25NiCr coatings sprayed with high-velocity thermal spray processes. Surface & Coatings 370 (2019) 196-212.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e2752d72-32f2-40a9-b919-9897a004eb0e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.