PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Identification of Face Mask Waste Generation and Processing in Tourist Areas with Thermo-Chemical Process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The very high need for personal protective equipment (PPE) impacts the waste generated after using these tools. Therefore, to deal with mask waste during the COVID-19 pandemic, this study was carried out on the processing of mask waste using a thermal process and studied how the potential of this process was for the effectiveness of mask waste processing during the pandemic. This research was conducted on Honeymoon Beach by collecting data on mask waste generated during the pandemic, then measuring the waste proximate, ultimate, and calorific value and testing the thermal process using TGA and Piro GC-MS measurements. Most waste masks found on Honeymoon Beach are non-reusable masks, 94.74%, while reusable masks are 5.26%. The waste is then subjected to thermal processing and analysis using TGA and Piro GC-MS. Based on the data obtained, the thermal process can reduce the mass of non-reusable and reusable mask samples by 99.236% and 88.401%, respectively. The results of the Piro GC-MS analysis show that the lit mask waste will produce fragments of compounds that can be reused as fuel. The process is simple and easy and produces residues that can be reused to reduce environmental pollution due to waste generation during the COVID-19 pandemic.
Słowa kluczowe
Rocznik
Strony
79--85
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr.
Twórcy
  •  Department of Environmental Engineering, Universitas Pertamina, Jakarta Selatan, Indonesia
  •  Department of Architecture and Civil Engineering, Toyohashi University of Technology, Japan
  •  Sanitary Engineering Laboratory, Study Program of Civil Engineering, Universitas Sebelas Maret, Surakarta, Indonesia
  •  Department of Environmental Engineering, Universitas Pertamina, Jakarta Selatan, Indonesia
autor
  •  Department of Architecture and Civil Engineering, Toyohashi University of Technology, Japan
  •  Faculty of Vocational Studies, Indonesia Defense University, Indonesia
  •  Department of Architecture and Civil Engineering, Toyohashi University of Technology, Japan
  • Department of Environmental Engineering, Institut Technologi Bandung, Indonesia
  •  Department of Environmental Science, Universitas Sebelas Maret., Surakarta Central Java, Indonesia
  •  Department of Environmental Engineering, Universitas Diponegoro, Semarang, Indonesia
Bibliografia
  • 1. Akhbarizadeh, R., Dobaradaran, S., Nabipour, I., Tangestani, M., Abedi, D., Javanfekr, F., Jeddi, F. & Zendehboodi, A. (2021). Abandoned Covid-19 personal protective equipment along the Bushehr shores, the Persian Gulf: An emerging source of secondary microplastics in coastlines. Marine Pollution Bulletin, 168, 112386. DOI: 10.1016/j.marpolbul.2021.112386
  • 2. Ammendolia, J., Saturno, J., Brooks, A.L., Jacobs, S. & Jambeck, J.R. (2021). An emerging source of plastic pollution: Environmental presence of plastic personal protective equipment (PPE) debris related to COVID-19 in a metropolitan city. Environmental Pollution, 269, 116160. DOI: 10.1016/j.envpol.2020.116160
  • 3. Ayse, L.A., Dempster, E., Aparsi, T.D., Bawan, M., Arredondo, M.C., Chau, C., Chandler, K. D., Dobrijevic, Hailes, H., Lettieri, P., Liu, C., Medda, F., Michie, F., Michie, S., Miodownik, M., Purkiss, D. & Ward, J. (2020). The enviromnetal dangers of employing single-use face masks as parts of a COVID-19 exit strategy. UCL Open: Environment.
  • 4. Benson, N.U., Fred-Ahmadu, O.H., Bassey, D.E. & Atayero, A.A. (2021). COVID-19 pandemic and emerging plastic-based personal protective equipment waste pollution and management in Africa. Journal of Environmental Chemical Engineering, 9(3), 105222. DOI: 10.1016/j.jece.2021.105222
  • 5. Carter, E.A., Swarbrick, B., Harrison, T.M. & Ronai, L. (2020). Rapid identification of cellulose nitrate and cellulose acetate film in historic photograph collections. Heritage Science, 8(1), 1–13. DOI: 10.1186/s40494-020-00395-y
  • 6. Cordova, M.R., Nurhati, I.S., Riani, E., Nurhasanah & Iswari, M.Y. (2021). Unprecedented plastic-made personal protective equipment (PPE) debris in river outlets into Jakarta Bay during COVID-19 pandemic. Chemosphere, 268, 129360. DOI: 10.1016/J.CHEMOSPHERE.2020.129360
  • 7. Fadare, O.O. & Okoffo, E.D. (2020). Covid-19 face masks: A potential source of microplastic fibers in the environment. The Science of the Total Environment, 737, 140279. DOI: 10.1016/j.scitotenv.2020.140279
  • 8. Fatimah, Y. A., Govindan, K., Murniningsih, R. & Setiawan, A. (2020). Industry 4.0 based sustainable circular economy approach for smart waste management system to achieve sustainable development goals: A case study of Indonesia. Journal of Cleaner Production, 269, 122263. DOI: 10.1016/j.jclepro.2020.122263
  • 9. Google Map. (2021). Google Map. https://www.google.com/maps/place/
  • 10. Jung, S.-H., Cho, M.-H., Kang, B.-S. & Kim, J.-S. (2010). Pyrolysis of a fraction of waste polypropylene and polyethylene for the recovery of BTX aromatics using a fluidized bed reactor. Fuel Processing Technology, 91(3), 277–284. DOI: 10.1016/j.fuproc.2009.10.009
  • 11. Marshall, R.E. & Farahbakhsh, K. (2013). Systems approaches to integrated solid waste management in developing countries. Waste Management, 33(4), 988–1003. DOI: 10.1016/j.wasman.2012.12.023
  • 12. Miandad, R., Rehan, M., Barakat, M.A., Aburiazaiza, A.S., Khan, H., Ismail, I.M.I., Dhavamani, J., Gardy, J., Hassanpour, A. & Nizami, A.-S. (2019). Catalytic Pyrolysis of Plastic Waste: Moving Toward Pyrolysis Based Biorefineries. Frontiers in Energy Research, 7, 27. DOI: 10.3389/fenrg.2019.00027
  • 13. Mutiara, M., Inoue, T., Harryes, R.K., Suryawan, W.K., Yokota, K., Notodarmojo, S., Priyambada, I.B. & Septiariva, I.Y. (2021). Potential of Waste to Energy Processing for Sustainable Tourism in Nusa Penida Island, Bali. Journal Bahan Alam Terbarukan, 10(200), 96–103. http://journal.unnes.ac.id/nju/index.php/jbat
  • 14. Neupane, B.B., Mainali, S., Sharma, A. & Giri, B. (2019). Optical microscopic study of surface morphology and filtering efficiency of face masks. PeerJ, 7, e7142. DOI: 10.7717/peerj.7142
  • 15. Rakib, M.R.J., De-la-Torre, G.E., Pizarro-Ortega, C.I., Dioses-Salinas, D.C. & Al-Nahian, S. (2021). Personal protective equipment (PPE) pollution driven by the COVID-19 pandemic in Cox’s Bazar, the longest natural beach in the world. Marine Pollution Bulletin, 169, 112497. DOI: 10.1016/j.marpolbul.2021.112497
  • 16. Sangkham, S. (2020). Face mask and medical waste disposal during the novel COVID-19 pandemic in Asia. Case Studies in Chemical and Environmental Engineering, 2, 100052. DOI: org/10.1016/J.CSCEE.2020.100052
  • 17. Sari, G.L., Hilmi, I.L., Nurdiana, A., Azizah, A.N. & Kasasiah, A. (2021). Infectious Waste Management as the Effects of Covid-19 Pandemic in Indonesia. Asian Journal of Social Science and Management Technology, 3(2), 62–75.
  • 18. Selvaranjan, K., Navaratnam, S., Rajeev, P. & Ravintherakumaran, N. (2021). Environmental challenges induced by extensive use of face masks during COVID-19: A review and potential solutions. Environmental Challenges, 3, 100039. DOI: 10.1016/j.envc.2021.100039
  • 19. Septiariva, Sarwono, A., Suryawan, I.W.K. & Ramadan, B.S. (2022). Municipal Infectious Waste during COVID-19 Pandemic: Trends, Impacts, and Management. International Journal of Public Health Science (IJPHS), 11(2). DOI: 10.11591/ijphs.v11i2.21292
  • 20. Sharma, H.B., Vanapalli, K.R., Cheela, V.R.S., Ranjan, V.P., Jaglan, A.K., Dubey, B., Goel, S. & Bhattacharya, J. (2020). Challenges, opportunities, and innovations for effective solid waste management during and post COVID-19 pandemic. Resources, Conservation and Recycling, 162, 105052. DOI: 10.1016/j.resconrec.2020.105052
  • 21. Singh, E., Kumar, A., Mishra, R. & Kumar, S. (2022). Solid waste management during COVID-19 pandemic: Recovery techniques and responses. Chemosphere, 288, 132451. DOI: 10.1016/j.chemosphere.2021.132451
  • 22. Suryawan, I.W.K., Rahman, A., Septiariva, I.Y., Suhardono, S. & Wijaya, I.M.W. (2021). Life Cycle Assessment of Solid Waste Generation During and Before Pandemic of Covid-19 in Bali Province. Journal of Sustainability Science and Management, 16(1), 11–21. DOI: 10.46754/jssm.2021.01.002
  • 23. Suryawan, I.W.K., Septiariva, I.Y., Fauziah, E.N., Ramadan, B.S., Qonitan, F.D., Zahra, N.L., Sarwono, A., Sari, M.M., Ummatin, K.K. & Wei, L.J. (2022). Municipal Solid Waste to Energy: Palletization of Paper and Garden Waste into Refuse Derived Fuel. Journal of Ecological Engineering, 23(4), 64–74.
  • 24. Swennen, G.R.J., Pottel, L. & Haers, P.E. (2020). Custom-made 3D-printed face masks in case of pandemic crisis situations with a lack of commercially available FFP2/3 masks. International Journal of Oral and Maxillofacial Surgery, 49(5), 673–677. DOI: 10.1016/j.ijom.2020.03.015
  • 25. Trinh, V.T., Van, H.T., Pham, Q.H., Trinh, M.V. & Bui, H.M. (2020). Treatment of medical solid waste using an Air Flow controlled incinerator. Polish Journal of Chemical Technology, 22(1), 29–34. DOI: 10.2478/pjct-2020-0005
  • 26. Zahra, N.L., Septiariva, I.Y., Sarwono, A., Qonitan, F.D., Sari, Zahra, N.L., Septiariva, I.Y., Sarwono, A., Qonitan, F.D., Sari, M.M., Gaina, P.C., Ummatin, K.K., Arifianti, Q.A.M.O., Faria, N., Lim, J.-W., Suhardono, S. & Suryawan, I.W.K. (2022). Substitution Garden and Polyethylene Terephthalate (PET) Plastic Waste as Refused Derived Fuel (RDF). International Journal of Renewable Energy Development, 11(2), 523–532. DOI: 10.14710/ijred.2022.44328
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e26f672e-4098-4d5e-a29f-715a60e88a61
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.