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Abstract: This paper is devoted to the study of the problem of
stabilization by proportional-plus-derivative state feedback for mul-
tivariable linear time-invariant systems. In particular, explicit ne-
cessary and sufficient conditions are established for the stability of
a closed-loop system obtained by proportional-plus-derivative state
feedback from the given multivariable linear time-invariant system.
A procedure is given for the computation of stabilizing proportional-
plus-derivative state feedback. Our approach is based on properties
of real and polynomial matrices.
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1. Introduction

Proportional-plus-derivative feedback control of multivariable linear-time invari-
ant systems has quite a long history. Seraji and Tarokh (1977) did introduce the
problem of pole assignment by proportional-plus-derivative output feedback for
multivariable linear time-invariant systems. In particular, in Seraji and Tarokh
(1977) a method was given for placing up to max(2m, 2p) poles of the closed-
loop system, where m and p are the numbers of inputs and outputs, respec-
tively, of the closed-loop system. A method for assigning up to max(2m + p-1,
2p+m-1) poles of a closed-loop system by the proportional-plus-derivative out-
put feedback has been presented in Seraji (1980). In Tarokh and Seraji (1977)
a new class of multivariable output feedback controllers was introduced, con-
sisting of proportional-plus multiple derivative terms. It is shown that all poles
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of the closed-loop system can be placed at desired positions provided a suffi-
cient number of derivative terms are available, which can be calculated using
the procedure, described in Tarokh and Seraji (1977).

It was demonstrated in Abdelaziz (2015) that controllability is the sufficient
condition for the solution of pole assignment problem by proportional-plus-
derivative feedback for single-input-single-output linear time-invariant systems.

In Kiritsis (2022) the explicit necessary and sufficient conditions have been
established for a given polynomial with real coefficients to be characteristic poly-
nomial of a closed-loop system obtained by proportional-plus-derivative state
feedback from the given multivariable linear time-invariant system. Further-
more, a procedure is given for the calculation of proportional-plus-derivative
state feedback, which places the poles of the closed-loop system at desired lo-
cations. It is also proven in Kiritsis (2022) that every multivariable linear time-
invariant controllable system is stabilizable by proportional-plus-derivative state
feedback.

In Chu and Datta (2006) and in Henrion, Sebek and Kucera (2005) the ro-
bust pole assignment problem for second order systems by proportional plus
derivative state feedback has been investigated. The so-called eigenstructure
assignment problem (simultaneous assignment of poles and eigenvectors of the
closed-loop system) by proportional-plus-derivative feedback for multivariable
linear-time invariant systems has attracted much attention over the last two
decades. For more details we refer the reader to Duan and Wang (2004, 2005),
Abdelaziz and Valasek (2005), Chu (2002), Duan and Liu (2003), Wang, Qiang
and Duan (2006), and Abdelaziz (2017), as well as the references given therein.
A control design method for multivariable linear time-invariant systems us-
ing proportional-plus-derivative output feedback is presented in Haraldsdot-
tir, Kabamba and Ulsoy (1990). The study of Chu and Malabre (2002) con-
cerns the row-by-row decoupling problem of multivariable linear time-invariant
systems by proportional-plus-derivative state feedback and they developed a
numerically reliable method for the computation of the desired feedback ma-
trices. The proportional-plus-derivative state feedback design methods have
been extensively studied over the last forty-five years and many papers have
been published in this area; for a more complete list of references, we refer
the reader to Abdelaziz (2017). To the best of our knowledge, the stabiliza-
tion problem by proportional-plus-derivative state feedback for multivariable
linear time-invariant systems, in its full generality, is an open problem yet.
This motivates the present study. In this paper, the explicit necessary and
sufficient conditions are established for the solution of the stabilization prob-
lem by proportional-plus-derivative state feedback for multivariable linear time-
invariant systems. Furthermore, a procedure is given for the computation of
stabilizing proportional-plus-derivative state feedback.
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2. Problem formulation

Consider a multivariable linear time-invariant system described by the following
state-space equations

ẋ (t) = Ax(t) +Bu(t) (1)

where A and B are real matrices of sizes nxn, nxm, respectively, x(t) is the
state vector of dimensions nx1 and u(t) is the vector of inputs of dimensions
mx1. Without any loss of generality we assume that

rank[B] = m. (2)

Consider the control law

u(t) = −Fx(t) +Dẋ (t) + v(t), (3)

where F and D are real matrices of sizes mxn and mxn, respectively, and v(t)
is the reference input vector of size mx1. By applying the proportional-plus-
derivative state feedback (3) to the system (1) the state-space equations of
closed–loop system become

[I−BD]ẋ (t) = (A−BF)x(t) +Bv(t). (4)

Let R be the field of real numbers. Also, let R[s] be the ring of polynomials
with coefficients in R. The stabilization problem considered in this paper can
be stated as follows:

Does there exist a proportional-plus-derivative state feedback (3) such that

det[(I−BD)s−A+BF] =µc (s) (5)

where c (s) is a strictly Hurwitz polynomial (it has no root λ such that Reλ ≥
0) over R[s] of degree n, and µ is a finite nonzero real number, and for this
formulation, conditions for the existence and a procedure for the computation
of matrices F and D should be given.

3. Basic concepts and preliminary results

This section contains the lemmas, which are needed to prove the main results of
this paper, and also some basic notions from linear control theory that are used
throughout the paper. A matrix whose elements are polynomials over R[s] is
termed polynomial matrix. A polynomial matrix U(s) over R[s] of dimensions
kxk is said to be unimodular if and only if its inverse exists and is also a
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polynomial matrix. Every polynomial matrix W(s) of dimensions pxm with
rank[W(s)] = r, can be expressed as

W(s) = U1(s)M(s)U2(s). (6)

The polynomial matrices U1(s) and U2(s) are unimodular and the matrix
M(s) is given by

M (s) =

[

Mr(s) 0
0 0

]

. (7)

The matrix Mr(s) of size rxr in (7) is given by

Mr(s) = diag[a1(s), a2(s), . . . . , ar(s)], (8)

where the polynomials ai(s) for i = 1, 2, .., r, are termed invariant polynomials
of W(s) and have the following property

ai(s) divides ai+1(s), for i = 1, 2, ....r − 1. (9)

The relationship (6) is called Smith-McMillan form of the matrix W(s) over
R[s]. Let A(s) be a polynomial matrix over R[s] if there are matrices P(s) and
Q(s) over R[s] such that

A(s) = P(s)Q(s). (10)

Then, the polynomial matrix P(s) over R[s] is termed left divisor of A(s).
Let A(s) and B(s), be matrices over R[s], if

A(s) = D(s)M(s) (11)

B(s) = D(s)N(s) (12)

for polynomial matrices M(s), N(s) and D(s) over R[s], then D(s) is termed
common left divisor of polynomial matrices A(s) and B(s).

The greatest common left divisor of two polynomial matrices A(s) and B(s)
is a common left divisor, which is a right multiple of every common left divisor.

The material on polynomial matrices and their properties, presented in this
section, was obtained primarily from the references Wolowich (1974), Antsaklis
and Michel (2006), Kucera (1991) and Rosenbrock (1970).

Definition 1 Let V(s) be a non-singular matrix over R[s], of size mxm. Also
let ci(s) for i = 1, 2, · · · ,m be the invariant polynomials of polynomial matrix
V(s). Then the zeros of the polynomial matrix V(s) are the roots of the poly-
nomials ci(s) for i = 1, 2, ...,m taken all together, see Rosenbrock (1973).
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Definition 2 Let V(s) be a non-singular matrix over R[s], of size mxm. The
polynomial matrix V(s) is said to be strictly Hurwitz if and only det[V(s)] is
a strictly Hurwitz polynomial or, alternatively, if and only if all zeros of the
matrix V(s) have negative real parts.

Remark 1 Let V(s) be a non-singular and strictly Hurwitz matrix over R[s],
of size m×m. Also let Φ be a non-singular matrix over R of size m×m. Since,
by assumption, the matrix V(s) over R[s], is strictly Hurwitz, from Definition
2 it follows that the polynomial det[V(s)] is strictly Hurwitz. Since det[V(s)] is
a strictly Hurwitz polynomial, det[ ΦV(s)] = det[Φ]det[V(s)] is also a strictly
Hurwitz polynomial and therefore, by Definition 2, the matrix ΦV(s) is strictly
Hurwitz.

Definition 3 The matrix A over R matrices of size nxn, is said to be Hurwitz
stable if and only if all eigenvalues of the matrix A have negative real parts
or, alternatively, if and only if the characteristic polynomial of matrix A is a
strictly Hurwitz polynomial.

Definition 4 Let A and B be matrices over R matrices of size nxn, nxm,
respectively. Then, an eigevalue λ of A is called a controllable eigenvalue of the
pair (A B), see Tredelman, Stoorvogel and Hautus (2002), if and only if

rank[Iλ−A,B] = n.

The following definition follows directly from Definition 4:

Definition 5 Let A and B be matrices over R matrices of size nxn, nxm,
respectively. Then an eigevalue λ of A is called an uncontrollable eigenvalue of
the pair (A, B) if and only if

rank[Iλ−A,B] < n.

Definition 6 Let A and B be matrices over R matrices of size nxn, nxm,
respectively. Then the pair (A, B) is said to be stabilizable if and only if there
exists a matrix F over R of size mxn such that the matrix [(A+BF] is Hurwitz
stable, see Wonham (1967).

Lemma 1 Let V(s) be a non-singular matrix over R[s], of size mxm. A com-
plex number ξ is a zero of polynomial matrix V(s) if and only if the following
condition holds:

rank[V(ξ)] < m.

Proof See Pugh and Ratcliffe (1979).
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Lemma 2 Let A(s) and B(s) be matrices over R[s] of sizes n x n, n x m,
respectively. Let K(s) be a unimodular matrix such that

[A(s),B(s)] = [V(s)0]K(s).

Then the polynomial matrix V(s) is the greatest common left divisor of polyno-
mial matrices A(s) and B(s).

Proof See Antsaklis and Michel (2006).

The following lemma was first published by Wonham (1967), and can be also
found in any standard book on linear control theory, see, e.g., Kucera (1991).

Lemma 3 Let A and B be matrices over R matrices of size nxn, nxm, re-
spectively. Then the pair (AB) is controllable if and only if for every monic
polynomial c (s) over R[s] of degree n there exists a matrix F over R of size
m x n, such that the matrix [A+BF] has characteristic polynomial c (s).

The standard decomposition of uncontrollable systems, which is given in the
subsequent lemma was first published by Kalman (1963), and can be also found
in any standard book on linear control theory, see, e.g., Antsaklis and Michel
(2006) or Kucera (1991),

Lemma 4 Let the pair (AB) be uncontrollable and B not zero. Then there
exists a non-singular matrix T such that

T−1AT =

[

A11 A12

0 A22

]

, T−1B =

[

B1

0

]

.

The pair (A11B1) is controllable and the eigenvalues of the matrix A22 are
the uncontrollable eigenvalues of the pair (AB).

Remark 2 Let A and B be matrices over R matrices of size nxn, nxm, re-
spectively. Further, let V(s) be the greatest common left divisor of polynomial
matrices [Is−A] and B. In Rosenbrock (1970), the zeros of the polynomial ma-
trix V(s) are termed input decoupling zeros. In Rosenbrock (1974) it is stated
that the input decoupling zeros are the uncontrollable eigenvalues of the pair
(AB). The Lemma 5 that follows gives an alternative proof of this fundamental
result.

Lemma 5 Let A and B be matrices over R matrices of size nxn, nxm, respec-
tively. Further, let the pair (AB) be uncontrollable and B not zero. Let also
V(s) be the greatest common left divisor of matrices [Is − A], B. Then the
following condition holds:

the zeros of the polynomial matrix V(s) are the uncontrollable eigenvalues
of the pair (AB).
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Proof Let λ be an uncontrollable eigenvalue of the pair (A,B). Then, from
Definition 5 it follows that

rank[Iλ−A,B] < n. (13)

Let V(s) be the greatest common left divisor of polynomial matrices [Is–A]
and B. From Lemma 2 it follows that there exists a unimodular matrix U(s)
such that

[Is−A,B] = [V(s)0]U(s). (14)

For s = λ, from (14) we have that

[Iλ−A,B] = [V(λ),0]U(λ). (15)

Since the matrix U(s) is unimodular, the matrix U(λ) is non-singular and
therefore from (13) and (15) it follows that

rank[V(λ)] < n. (16)

Relationship (16) and Lemma 1 imply that the complex number λ is a zero
of the polynomial matrix V(s).

On the other hand, let λ be a zero of the polynomial matrix V(s). Then,
from Lemma 1 it follows that

rank[V(λ)] < n. (17)

Since the matrix U(s) is unimodular, the matrix U(λ) is non-singular and
therefore from (15) and (17) it follows that

rank[Iλ−A,B] < n. (18)

From (18) and Definition 5 it follows that the complex number λ, which is, by as-
sumption, a zero of the polynomial matrix V(s), is an uncontrollable eigenvalue
of the pair (A,B). This proves the claim and the proof is complete.

Remark 3 Let us point out that in Rosenbrock (1970) it is proven that the pair
(A,B) is controllable if and only if the matrices [Is−A] and B are relatively left
prime over R[s] or, alternatively, if and only if the greatest common left divisor
V(s), of matrices [Is − A], B, is a unimodular matrix. From the above and
Lemma 2 it follows that controllability of the pair (A,B) implies the existence
of a unimodular matrix U(s) such that

[Is−A,B] = [I,0]U(s).
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From the above and the proof of Lemma 5 it follows directly that the pair
(A, B) is uncontrollable if and only if the greatest common left divisor V(s) of
the polynomial matrices [Is - A] and B is not a unimodular matrix.

Lemma 6 Let A and B be matrices over R matrices of size nxn, nxm, respec-
tively and B not zero. Further, let V(s) be the greatest common left divisor of
the polynomial matrices [Is−A] and B. The pair (A, B) is stabilizable if and
only if any of the following equivalent conditions hold

(a) If

T−1AT =

[

A11 A12

0 A22

]

, T−1B =

[

B1

0

]

with (A11B1) controllable, then A22 is Hurwitz stable.

(b) The polynomial matrix V(s) is strictly Hurwitz.

Proof We shall first prove that stabilizability of the pair (A B) is equivalent
to (a), see Kucera (1991). From the statement of the Lemma we have that

A = T

[

A11 A12

0 A22

]

T−1, B = T

[

B1

0

]

. (19)

with (A11,B1) controllable. If the pair (A,B) is stabilizable, then from Defini-
tion 6 it follows that there exists a matrix F such that the matrix [A – BF] is
Hurwitz stable. Using (19) we have that

A− BF = T

[

A11 A12

0 A22

]

T−1 −T

[

B1

0

]

F =

= T

[

A11 A12

0 A22

]

−

[

B1

0

]

FTT−1. (20)

Let

FT = [F1,F2]. (21)

By substituting (21) into (20) and performing simple algebraic manipulations
we obtain that

A− BF = T

[

A11−B11F1 A12−B1F2

0 A22

]

T−1. (22)

From (22) it follows that
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[A – BF],

[

A11−B1F1 A12−B1F2

0 A22

]

are similar; therefore, Hurwitz stability of [A – BF] implies Hurwitz stability
of A22. On the other hand, controllability of the pair (A11 B11) and Lemma 3
imply the existence of a matrix F1 of appropriate size such that the matrix

[A11−B1F1] (23)

is Hurwitz stable. The matrix F1 can be computed using known methods for
the solution of pole assignment problem by state feedback, see Kucera (1991).

Let

F = [F1, 0]T
−1. (24)

By substituting (24) into (20) we obtain that

A−BF = T

[

A11−B1F1 A12

0 A22

]

T−1. (25)

Using (23), from (25) it follows that Hurwitz stability ofA22 implies Hurwitz
stability of [A – BF] with F given by (24) and therefore stabilizability of the
pair (A, B). Hence, (a) is complete. We shall show the equivalence of (a)
and (b). From Lemma 4 we have that the eigenvalues of the matrix A22 are the
uncontrollable eigenvalues of the pair (A,B). Since, by condition (a), the matrix
A22 is Hurwitz stable, Hurwitz stability of A22 and Definition 3 imply that all
eigenvalues of the matrixA22 and therefore all uncontrollable eigenvalues of the
pair (A,B) have negative real parts. Since the uncontrollable eigenvalues of the
pair (A,B) have negative real parts, from Lemma 5 it follows that all zeros of
the polynomial matrix V(s) have negative real parts. Therefore, according to
Definition 2 the polynomial matrix V(s) is strictly Hurwitz. Hence (a) implies
(b).

We shall show the equivalence of (b) and (a). Since the polynomial matrix
V(s) is strictly Hurwitz, from Definition 2 we have that all zeros of polynomial
matrix V(s) have negative real parts. Since all zeros of the polynomial matrix
V(s) have negative real parts, from Lemma 5 it follows that all uncontrollable
eigenvalues of the pair (A,B) have negative real parts and therefore, according
to Lemma 4, all eigenvalues of matrix A22 have negative real parts. Since all
eigenvalues of matrix A22 have negative real parts, from Definition 3 it follows
that the matrix A22 is Hurwitz stable. Hence, (b) implies (a) and the proof is
complete.

The proof of the following lemma is taken from Kiritsis (2022).
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Lemma 7 Let A and B be matrices over R matrices of size nxn and nxm,
respectively. Suppose that the pair (A, B) is controllable. Further, let D be an
arbitrary matrix over R of appropriate dimensions, such that det[I−BD] 6= 0.
Then the following condition holds:

the pair [(I−BD)
−1

A, (I−BD)
−1

B] is controllable.

Proof Since, by assumption, the pair (A,B) is controllable, from Remark 3 it
follows that there exists a unimodular matrix U(s) such that

[Is−A,B] = [I,0]U(s). (26)

We rewrite the polynomial matrix [(I−BD)s−A,B] as

[(I−BD)s−A,B] = [Is−A,B]

[

In 0
−Ds Im

]

. (27)

Since, by assumption, det[I−BD] 6= 0, the matrix [I−BD] is non-singular
and therefore from (26) and (27) it follows that

[I−BD][Is− (I−BD)
−1

A, (I−BD)
−1

B] =

= [I,0]U(s)

[

In 0
−Ds Im

]

. (28)

Since, again by assumption, the matrix [I−BD] is non-singular, from (28)
it follows that

[Is− (I−BD)
−1

A, (I−BD)
−1

B] =

= [(I−BD)
−1

, 0]U(s)

[

In 0
−Ds Im

]

. (29)

Then, since the following matrix over R[s]

[

In 0
−Ds Im

]

U(s) (30)

is a unimodular matrix, it follows from (29) and Lemma 2 that the unimod-

ular matrix (I−BD)
−1

is the greatest common left divisor of the polynomial

matrices [Is − (I−BD)
−1

A], [I−BD]
−1

B. This implies, according to Re-

mark 3, that the pair [(I−BD)
−1

A, (I−BD)
−1

B] is controllable. This is the
condition (a) of the lemma and the proof is complete.
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Lemma 8 Let A and B be matrices over R matrices of size nxn and nxm,
respectively. Suppose that the pair (A,B) is uncontrollable and stabilizable.
Further, let D be an arbitrary matrix over R of appropriate dimensions such
that det[I−BD] 6= 0 Then the following condition holds:

the pair [(I−BD)−1A(I−BD)−1B] is uncontrollable and stabilizable.

Proof We rewrite the polynomial matrix [(I−BD)s−A,B] as

[(I−BD)s−A,B] = [Is−A,B]

[

In 0
−Ds Im

]

. (31)

Let V(s) be the greatest common left divisor of the polynomial matrices
[Is − A] and B. Since, by assumption, the pair (A,B) is uncontrollable, from
Lemma 2 it follows that there exists a unimodular matrix U(s) such that

[Is−A,B] = [V(s)0]U(s). (32)

From (31) and (32) it follows that

[(I−BD)s−A,B] = [V(s),0]U(s)

[

In 0
−Ds Im

]

. (33)

Since, by assumption, det[I−BD] 6=0, the matrix [I−BD] is non-singular
and therefore the polynomial matrix [(I−BD)s−A,B] can be rewritten in the
following manner:

[(I−BD)s−A,B] =

[I−BD][Is− (I−BD)
−1

A, (I−BD)
−1

B]. (34)

From (33) and (34) it follows that

[I−BD][Is− (I−BD)
−1

A, (I−BD)
−1

B] =

= [V(s)0]U(s)

[

In 0
−Ds Im

]

, (35)

or, equivalently,

[Is− (I−BD)
−1

A, (I−BD)
−1

B] =

= [(I−BD)
−1

V(s),0]U(s)

[

In 0
−Ds Im

]

. (36)

Since the matrix U(s) is unimodular, the following matrix

U(s)

[

In 0
−Ds Im

]

(37)
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is also unimodular and therefore, in accordance with Lemma 2, the polynomial
matrix (I−BD)

−1
V(s) is the greatest common left divisor of the polynomial

matrices [Is - (I−BD)
−1

A] and (I−BD)
−1

B. Since, by assumption, the pair
(A,B) is uncontrollable, from Remark 3 it follows that the polynomial ma-

trix V(s), and therefore also the matrix (I−BD)
−1

V(s) are not unimodular.

Hence, the pair [(I−BD)
−1

A, (I−BD)
−1

B] is uncontrollable. This is a part
of the condition from the lemma. Since, by assumption, the pair (A,B) is
stabilizable, from condition (b) of Lemma 6 it follows that the matrix V(s) is

strictly Hurwitz. Since the matrix (I−BD)
−1

is non-singular, from Remark 1

it follows that the matrix (I−BD)
−1

V(s) over R[s] is also strictly Hurwitz

and therefore, according to condition (b) of Lemma 6, the pair [(I−BD)
−1

A,

(I−BD)
−1

B] is stabilizable. Hence, condition of the lemma is complete and
the proof of the lemma is also complete.

4. Main results

The theorems, provided in the following, are the main results of this paper and
give explicit necessary and sufficient conditions for the solution of the stabiliza-
tion problem by proportional-plus-derivative state feedback for multivariable
linear time-invariant systems.

Theorem 1 Let the pair (A,B) be controllable. Then there exists a proportional-
plus-derivative state feedback (3) such that the closed-loop system (4) is stable.

Proof From relationship (2) it follows that there exists a non-singular matrix
S such that

B = S

[

Im
0

]

. (38)

We form the matrix

D = [(X+ Im),0]S−1 (39)

where X is an arbitrary non-singular matrix over R of size m x m with X 6=−Im.
From (38) and (39) it follows that the matrix

[I−BD] = Sdiag[Im , In−m ] S−1−S

[

Im
0

]

[(X+ Im),0]S−1 =

= Sdiag[−X, In−m]S−1 (40)
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is non-singular. Let A1 and B1 be real matrices of appropriate dimensions,
given by

A1 = [I−BD]
−1

A (41)

B1 = [I−BD]
−1

B. (42)

Since, by assumption, the pair (AB) is controllable, from Lemma 7 it follows

that the pair (A1, B1) or, equivalently, the pair [(I−BD)
−1

A, (I−BD)
−1

B]
with D given by (40), is also controllable.

Controllability of the pair [(I−BD)
−1

A, (I−BD)
−1

B] and Lemma 3
imply the existence of a matrix F such that

det[Is−A1 +B1F] =

= det[Is−(I−BD)
−1

A + (I−BD)
−1

BF] = c(s) (43)

where c(s) is an arbitrary monic and strictly Hurwitz polynomial over R[s]
of degree n. The matrix F can be computed using known methods for the
solution of pole assignment problem by state feedback, see Kucera (1991). Since
the matrix (I−BD) with D given by (40) is, by construction, non-singular,
the relationship (43), after simple algebraic manipulations, can be rewritten as
follows

det[Is−(I−BD)
−1

A + (I−BD)
−1

BF] =

= det[(I−BD)
−1

]det[(I−BD)s−A+BF] =c(s). (44)

From (44) we have that

det[(I−BD)s−A+BF] = µc(s), (45)

where µ is a finite nonzero real number given as

µ = 1/(det[(I−BD)
−1

). (46)

Since c (s) is a strictly Hurwitz polynomial, from (45) and (5) it follows that
the closed-loop system (4) is stable. This completes the proof.

It should be pointed out that Theorem 1 was first proven in Kiritsis (2022),
and in this paper we present an alternative proof of it.

Theorem 2 Let the pair (AB) be uncontrollable. Then the problem of sta-
bilization by proportional-plus-derivative state feedback for multivariable linear
time-invariant systems has solution over R if and only if the following condition
holds:

the pair (A,B) is stabilizable.
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Proof Suppose that the problem of stabilization by proportional-plus-derivative
state feedback has a solution over R. From (5) it follows that

det[(I−BD)s−A+BF]=µc(s), (47)

where µ is a finite nonzero real number and c (s) is monic strictly Hurwitz
polynomial over R[s] of degree n. Let V(s) be the greatest common left divisor
of polynomial matrices [Is − A] and B. Then, from (11) and (12) it follows that

[Is−A] = V(s)X(s) (48)

B = V(s)Y(s) (49)

for polynomial matrices X(s) and Y(s) over R[s] of appropriate dimensions. We
rewrite the polynomial matrix [(I−BD)s−A+BF] as

[(I−BD)s−A+BF] = [Is−A,B]

[

I
−Ds+ F

]

. (50)

Using (48), (49) and (50), after simple algebraic manipulations, the relation-
ship (47) can be rewritten as

det [(I−BD) s−A +BF ] =

= det[V(s)]det{[X(s),Y(s)]

[

I
−Ds+ F

]

} = µc (s) . (51)

From the relationship (51) it follows that

det[V(s)] divides [µc (s)]. (52)

Since, by assumption, c (s) is a monic strictly Hurwitz polynomial over R[s]
of degree n, from (52) it follows that det[V(s)] is a strictly Hurwitz polynomial
over R[s]; therefore, by Definition 2, the polynomial matrix V(s) is strictly
Hurwitz. Since V(s) is strictly Hurwitz, from condition (b) of Lemma 6 it
follows that the pair (A, B) is stabilizable. This is the condition of the theorem.

In order to prove sufficiency, we assume that the condition of the theorem
holds. From (2) it follows that there exists a non-singular matrix S such that

B = S

[

Im
0

]

. (53)

We form the matrix

D = [(X+ Im),0]S−1 (54)
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where X is an arbitrary non-singular matrix over R of size mxm with X 6=−Im.
From (53) and (54) it follows that the matrix

[I−BD] = Sdiag[Im, In−m] S−1−S

[

Im
0

]

[(X+ Im),0]S−1 =

= Sdiag[−X, In−m]S−1 (55)

is non-singular. Let A1 and B1 be real matrices of appropriate dimensions,
given by

A1 = [I−BD]
−1

A (56)

B1 = [I−BD]
−1

B. (57)

Since, by assumption, the pair (A, B) is uncontrollable, it follows from

Lemma 8 that the pair (A1, B1) or, equivalently, the pair [(I−BD)
−1

A,

(I−BD)
−1

B], with D given by (55), is uncontrollable and therefore from
Lemma 4 it follows that there exists a non-singular matrix L such that

A1 = L

[

M11 M12

0 M22

]

L−1, B1 = L

[

N1

0

]

. (58)

The pair (M11 N1) is controllable and the eigenvalues of the matrix M22

are the uncontrollable eigenvalues of the pair (A1, B1). Since, by the condition
of the theorem, the pair (A, B) is stabilizable, it follows from Lemma 8 that
the pair (A1, B1) is stabilizable and therefore, by condition (a) of Lemma 6,
the matrix M22 is Hurwitz stable. Hurwitz stability of the matrix M22 and
Definition 3 imply that

det [ Is−M22] =χ (s) , (59)

where χ (s) is the characteristic polynomial of the matrix M22, which is strictly
Hurwitz. On the other hand, controllability of the pair (M11 N1) and Lemma
3 imply the existence of matrix F1 of appropriate size, such that the matrix

det[Is−M11+N1F1] = ϕ(s), (60)

where ϕ(s) is an arbitrary monic and strictly Hurwitz polynomial of appropriate
degree. The matrix F1 can be computed using known methods for the solution
of pole assignment problem by the state feedback, see Kucera (1991).

From the relationships (56), (57) and (58) we deduce that

A1− B1F = (I−BD)
−1

A−(I−BD)
−1

BF =

= L

[

M11 M12

0 L22

]

− L−1−L

[

N1

0

]

F =

= L

[

M11 M12

0 M22

]

−

[

N1

0

]

FLL−1. (61)
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Let

F = [F1,0]L
−1. (62)

By substituting (62) into (61) we obtain that

(I−BD)
−1

A−(I−BD)
−1

BF =

= L

[

M11−N1F1 M12

0 M22

]

L−1. (63)

Using (59) and (60) from (63) we obtain that

det[Is−(I−BD)
−1

A + (I−BD)
−1

BF] =

= det[Is−M11+N1F1]det[Is−M22] = ϕ(s)χ (s) . (64)

Since the matrix (I−BD) with D given by (55) is a non-singular matrix
over R, then from (64) and after some algebraic manipulations we obtain that

det[Is− (I−BD)
−1

A + (I−BD)
−1

BF] =

= det[(I−BD)
−1

]det[(I−BD)s−A+BF]=ϕ(s)χ(s), (65)

or, equivalently,

det[(I−BD)s−A+BF]=µϕ(s)χ(s) = µc(s), (66)

where c(s) = ϕ(s)χ(s) and µ is a finite nonzero real number, which is given by

µ = 1/(det[(I−BD)
−1

). (67)

Since by (59) and (60) the polynomials χ (s) ϕ(s) are strictly Hurwitz, the
polynomial c(s) is also a strictly Hurwitz polynomial and therefore from (66)
and (5) it follows that the closed-loop system (4) is stable. This proves the
sufficiency of the condition of the theorem and the proof is complete.

The sufficiency parts of the proofs of Theorem 1 and Theorem 2 suggest
simple procedures to compute the matrices F and D of stabilizing proportional-
plus-derivative state feedback. These are provided in the sequel.

CONSTRUCTION 1

Given: A, B

Assumption: (A,B) is controllable.

Find : F and D

Step 1: Find a non-singular matrix S such that
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B = S

[

Im
0

]

.

Form the matrix

D = [(X+Im), 0]S−1

where X is an arbitrary non-singular matrix over R of size mxm with X 6=−Im.

Step 2: Calculate the matrices

[I−BD] = Sdiag[−X, In−m]S−1

A1 = [I−BD]
−1

A

B1 = [I−BD]
−1

B.

Step 3: Using known methods for the solution of pole assignment problem
by state feedback, see Kucera (1991), find a matrix F over R such that

det[Is−A1 +B1F] = det[Is− (I−BD)−1A+ (I−BD)−1BF] = c(s)

where c (s) is an arbitrary monic and strictly Hurwitz polynomial over R[s] of
degree n.

CONSTRUCTION 2

Given: A, B

Assumption: (A,B) is uncontrollable.

Find : F and D

Step 1: Using Lemma 6, check the condition of Theorem 2. If this condition
is satisfied, then go to Step 2. If the condition is not satisfied, then go to Step
7.

Step 2: Find a non-singular matrix S such that

B = S

[

Im
0

]

.

Form the matrix

D = [(X+Im), 0]S−1
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where X is an arbitrary non-singular matrix over R of size mxm with X 6=−Im.

Step 3: Calculate the matrices

[I−BD] = S diag[−X, In−m]S−1

A1 = [I−BD]
−1

A

B1 = [I−BD]
−1

B.

Step 4: Compute, according to Lemma 4, a non-singular matrix L such that

A1 = [I−BD]
−1

A = L

[

M11 M12

0 M22

]

L−1

B1 = [I−BD]
−1

B = L

[

N1

0

]

with (M11 N1) controllable.

Step 5: Using known methods for the solution of pole assignment by state
feedback, see Kucera (1991), find a matrix F1 over R of appropriate dimensions
such that

det[Is−M11+N1F1] = ϕ(s),

where ϕ(s) is an arbitrary strictly Hurwitz polynomial over R[s] of appropriate
degree.

Step 6: Put

F= [F1, 0]L
−1.

Step 7: The solution of the stabilization problem by proportional-plus-
derivative state feedback is impossible.

Example 1 Consider a linear system (1) specified by:

A =

[

−2 0
1 2

]

B =

[

1
0

]

,
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i.e. n = 2 and m = 1.

The task is to check if the problem of stabilization by the proportional-plus-
derivative state feedback has a solution. The eigenvalues λ1 and λ2 of the matrix
A are given by

λ1 = −2, λ2 = 2.

Let I2 be the identity matrix of size (2 x 2). We form the matrices

[(I2λ1 A), B] =

[

0 0 1
−1 −4 0

]

[(I2λ2) A, B] =

[

4 0 1
−1 0 0

]

.

We have that

rank[(I2λ1A), B] = rank

[

0 0 1
−1 −4 0

]

= 2

rank[(I2λ2)A, B] = rank

[

4 0 1
−1 0 0

]

= 2.

The last relationships and the Definition 4 imply that the eigenvalues λ1

and λ2 are controllable; therefore the given system is controllable, see Tredel-
man, Stoorvogel and Hautus (2002). Since the given system is controllable,
then, according to Theorem 1, the problem of stabilization by proportional-
plus-derivative state feedback has a solution over the field of real numbers. For
the computation of matrices F and D of stabilizing proportional-plus-derivative
state feedback we shall follow the steps of Construction 1.

To carry out Step 1 set

S = I2.

Since m = 1, put

X = 2.

We have that

D = [(X+ Im),0]S−1 = [3, 0]I2 = [3, 0].

In order to execute Step 2, we first calculate the matrix [I2−BD] as follows

[I2 −BD] = S diag[−X, In−m]S−1 = I2

[

−2 0
0 1

]

I2 =

[

−2 0
0 1

]

.
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We have that

[I−BD]
−1

=

[

−1/2 0
0 1

]

The matrices A1 and B1 are given by

A1 = [I−BD]
−1

A =

[

1 0
1 2

]

B1 = [I−BD]
−1

B =

[

−1/2
0

]

.

In order to execute Step 3, we first calculate the following rational matrix

[I2s−A1]
−1B1 = 1/(s2 − 3s+ 2)

[

−( s
2
) + 1

−1/2

]

.

Let D(s) and N(s) be polynomial matrices given by, see Kucera (1991),

D(s) = s2 − 3s+ 2 and N(s) =

[

−( s
2
) + 1

−1/2

]

.

Further, let c(s) be a strictly Hurwitz polynomial, given by

c(s) = s2 + 4s+ 4.

Then the equation

D(s) + FN(s) = s2 − 3s+ 2 + F

[

( s
2
) + 1)
−1/2

]

= s2 + 4s+ 4

has a unique solution for F over R, given by

F = [−14,−32].

The matrices [D(s) + FN(s)] and [Is−A1 +B1F] have the same non-unit
invariant polynomials and the same determinant, see Kucera (1991); therefore

det[D(s) + FN(s)] = det[Is−A1 +B1F] = c(s) = s2 + 4s+ 4.
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Example 2 Consider a linear system (1) specified by:

A =





1 0 0
0 2 1
0 0 −3





B =





1 0
0 1
0 0



 ,

i.e. n = 3 and m = 2.

The task is to check if the problem of stabilization by proportional-plus-
derivative state feedback has a solution.

Let I3 be the identity matrix of size (3 x 3). From Lemma 4 and for T = I3
we have that

A11 =

[

1 0
0 2

]

A12 =

[

0
1

]

A22 = [−3]

B1 =

[

1 0
0 1

]

.

From Lemma 4 it follows that the given system is uncontrollable. Since the
matrix A22 is Hurwitz stable, it follows from Lemma 6 that the given system is
stabilizable; therefore, according to Theorem 2, the problem of stabilization by
proportional-plus-derivative state feedback has a solution over the field of real
numbers. For the computation of matrices F and D of stabilizing proportional-
plus-derivative state feedback we shall follow the steps of Construction 2.

To carry out Step 2 set

S = I3.

Since m = 2, put

X =

[

2 0
0 1

]

.

We have that
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D = [(X+I2), 0]S
−1 =

[

3 0 0
0 2 0

]

I3 =

[

3 0 0
0 2 0

]

.

In order to execute Step 3, we first calculate the matrix [I3−BD] as follows

[I3 −BD] = S diag[−X, In−m]S−1 = I3





−2 0 0
0 −1 0
0 0 1



 I3 =

=





−2 0 0
0 −1 0
0 0 1



 .

We have that

(I3−BD)
−1

=





−1/2 0 0
0 −1 0
0 0 1





A1 = [(I−BD)
−1

A =





−1/2 0 0
0 −2 −1
0 0 −3





B1 = [(I−BD)
−1

B =





−1/2 0
0 −1
0 0



 .

Step 4 for L= I3 yields

A1 = [(I−BD)
−1

A = L

[

M11 M12

0 M22

]

L−1 =





−1/2 0 0
0 −2 −1
0 0 −3





B1 = [(I−BD)
−1

B = L

[

N1

0

]

=





−1/2 0
0 −1
0 0



 .

We have that

M11 =

[

−1/2 0
0 −2

]

M12 =

[

0
−1

]

M22 = [− 3]

N1 =

[

−1/2 0
0 −1

]

.

The pair (M11 N1) is controllable. We begin Step 5 by forming the matrix
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K =

[

−2 0
0 −1

]

.

The characteristic polynomial ϕ(s) of the matrix K is given by ϕ(s) =
det[I2s K] = s2 + 3s+ 2.

The roots of the polynomial ϕ(s) are (−2) and (−1); therefore, the polyno-
mial ϕ(s) is strictly Hurwitz. Since the matrix N1 is non-singular, the matrix
F1, given by

F1 = [M11 −K]N−1
1 =

[

−3 0
0 1

]

yields the matrix

[M11 −N1F1]=K =

[

−2 0
0 −1

]

with the characteristic polynomial ϕ(s)

ϕ(s)= det[I2s−M11+N1F1]=det[I2s−K] = s2 + 3s+ 2.

Step 6 yields

F = [F1,0]L
−1 = [F1, 0]I3 =

[

−3 0 0
0 1 0

]

.

5. Conclusions

In this paper, the problem of stabilization by the proportional-plus-derivative
state feedback for multivariable linear time invariant systems is studied and
completely solved. The proof of the main results of this paper is constructive
and furnishes a procedure for the computation of stabilizing proportional-plus-
derivative state feedback. The efficacy of the proposed method for the solution
of stabilization problem by proportional-plus-derivative state feedback is illus-
trated with numerical examples.
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