PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

High-Directional Sound Propagation Over the Earth’s Surface

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article discusses the issues of accounting the direction pattern of parametric antenna array the propagation of sound over the Earth’s surface. As a radiator, a parametric antenna array is used. A description is given of measuring equipment and experimental research methods. The Delaney-Bezley model was used as a model of the Earth’s surface impedance. The research results showed the importance of accounting the direction pattern of parametric antenna array in predicting the sound pressure level of a propagating acoustic signal over the Earth’s surface. On the example of a difference signal with a frequency of 2 kHz, the calculation of the sound pressure level on a 100-meter path with the influence of the Earth’s surface is shown. The results obtained showed a good agreement between the theoretical calculation and experimental data.
Rocznik
Strony
747--752
Opis fizyczny
Bibliogr. 24 poz., rys., wykr.
Twórcy
  • Institute of Monitoring of Climatic and Ecological Systems SB RAS, Tomsk, Russia
  • Tomsk State University of Control Systems and Radioelectronics, Tomsk, Russia
  • Institute of Monitoring of Climatic and Ecological Systems SB RAS, Tomsk, Russia
  • Tomsk State University of Control Systems and Radioelectronics, Tomsk, Russia
  • National Research Tomsk Polytechnic University, Tomsk, Russia
  • National Research Tomsk Polytechnic University, Tomsk, Russia
  • National Research Tomsk Polytechnic University, Tomsk, Russia
Bibliografia
  • 1. Adachi A. Hashiguchi H. (2019), Application of parametric speakers to radio acoustic sounding system, Atmos. Mcas. Tech. Discuss. Discussion started: 10 May 2019.
  • 2. Albert D. G. (2003), Observations of acoustic surface waves in outdoor sound propagation, Journal of the Acoustical Society of America, 113 (5): 2495-2500, doi: 10.1121/1.1559191.
  • 3. Aoki K., Kamakura T., Kumamoto Y. (1991), Parametric loudspeaker – characteristics of acoustic field and suitable modulation of carrier ultrasound, Electronics and Communications in Japan (Part III: Fundamental Electronic Science), 74 (9): 76-82, doi: 10.1002/ecjc.4430740908.
  • 4. Attenborough K. (2007), Predicting Outdoor Sound, London-New York: Taylor & Francis.
  • 5. Bennett M. B., Blackstock D. T. (1975), Parametric array in air, Journal of the Acoustical Society of America, 57 (3): 562-568, doi: 10.1121/1.380484.
  • 6. Berktay H. O. (1965), Possible exploitation of nonlinear acoustics in underwater transmitting applications, Journal of Sound and Vibration, 2 (4): 435-461, doi: 10.1016/0022-460X(65)90122-7.
  • 7. Boullosa R. R., Pérez-López A., Dorantes-Escamilla R., Rendón P. L. (2016), An airborne parametric array, Applied Acoustics, 112: 116-122, doi: 10.1016/j.apacoust.2016.05.015.
  • 8. Delany M. E., Bazley E. N. (1970), Acoustical properties of fibrous absorbent materials, Applied Acoustics, 3 (2): 105-116, doi: 10.1016/0003-682X(70)90031-9.
  • 9. Gan W., Tan E., Kuo S. (2011), Audio Projection, IEEE Signal Processing Magazine, 28 (1): 43-57, doi: 10.1109/MSP.2010.938755.
  • 10. Ju H. S., Kim Y. (2010), Near-field characteristics of the parametric loudspeaker using ultrasonic transducers, Applied Acoustics, 71 (9): 793-800, doi: 10.1016/j.apacoust.2010.04.004.
  • 11. Kamakura T., Tani M., Kumamoto Y., Breazeale M. A. (1994), Parametric sound radiation from a rectangular aperture source, Acta Acustica united with Acustica, 80 (4): 332-338.
  • 12. Krasnenko N. P., Rakov A. S., Rakov D. S., Shamanaeva L. G. (2014), Influence of impedance properties of the earth’s surface on sound attenuation during near-ground propagation, Russian Physics Journal, 57 (1): 100-109, doi: 10.1007/s11182-014-0213-y.
  • 13. Li K. M. (1994), A high-frequency approximation of sound propagation in a stratified moving atmosphere above a porous ground surface, Journal of the Acoustical Society of America, 95 (4): 1840-1852, doi: 10.1121/1.408699.
  • 14. Miki Y. (1990), Acoustical properties of porous materials – modifications of Delany-Bazley models, Journal of the Acoustical Society of Japan (E), 11 (1): 19-24, doi: 10.1250/ast.11.19.
  • 15. Muir T. G., Vestrheim M. (1979), Parametric arrays in air with applications to atmospheric sounding, Journal de Physique Colloques, 40 (C8): C8-101-C8-110, doi: 10.1051/jphyscol:1979819.
  • 16. Piercy J. E., Embleton T. F. W., Sutherland L. C. (1977), Review of noise propagation in the atmosphere, Journal of the Acoustical Society of America, 61 (6): 1403-1418, doi: 10.1121/1.381455.
  • 17. Rakov D. S., Rakov A. S., Kudryavtsev A. N., Krasnenko N. P., Chursin Y. A., Murin M. A. (2019), A study of directional patterns of ultrasonic parametric array, Archives of Acoustics, 44 (2): 301-307, doi: 10.24425/aoa.2019.128493.
  • 18. Reis J. (2016), Short overview in parametric loudspeakers array technology and its implications in spatialization in electronic music, Proceedings of ICMC 2016 – 42nd International Computer Music Conference, pp. 241-248, retrieved from www.scopus.com.
  • 19. Rudenko O. V. (1974), On parametric interaction of progressive sound waves [in Russian], Akusticheskij Zhurnal, 20 (1): 108-111, http://www.akzh.ru/pdf/1974_1_108-111.pdf.
  • 20. Shi C., Gan W. S. (2010), Development of parametric loudspeaker, IEEE Potentials, 29 (6): 20-24, doi: 10.1109/MPOT.2010.938148.
  • 21. Westervelt P. J. (1963), Parametric acoustic array, Journal of the Acoustical Society of America, 35 (4): 535-537, doi: 10.1121/1.1918525.
  • 22. Yoneyama M., Fujimoto J., Kawamo Y., Sasabe S. (1983), The audio spotlight: an application of nonlinear interaction of sound waves to a new type of loudspeaker design, Journal of the Acoustical Society of America, 73 (5): 1532-1536, doi: 10.1121/1.389414.
  • 23. Zabolotskaya E. A., Soluyan S. I., Khokhlov R. V. (1966), Ultrasonic parametric amplifier [in Russian], Akusticheskij Zhurnal, 12 (2): 188-191, http://www.akzh.ru/pdf/1966_2_188-191.pdf.
  • 24. Zverev V. A., Kalatchev A. I. (1970), On the cross-modulation effects by inlersection of sound beams [in Russian], Akusticheskij Zhurnal, 16 (2): 245-251, http://www.akzh.ru/pdf/1970_2_245-251.pdf.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e26cb4fe-b621-4c2a-9a83-afd69e03e396
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.