PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of the content of trace elements in the aerial and underground biomass of perennial grasses of the genus Miscanthus

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The content of lead, zinc, copper, nickel and chromium in the aerial and underground parts of M. sinensis from eleven years old plantation and M. sacchariflorus and M. giganteus from nine years old plantations were analysed in order to recognize what organs of the plant play the most important function as a metal accumulator. It was found that in the aboveground parts, lead, zinc and copper were accumulated mostly in leaves and nickel and chromium in stems of the studied species. In underground plant parts, especially in roots, zinc, copper and nickel were most abundantly accumulated, while rhizomes accumulated higher amounts of lead and chromium. The content of lead, zinc and copper was definitely lower in those plant organs than their content in soil. The content of nickel and chromium, on the other hand, showed the opposite dependence. A similar capacity for uptaking trace elements from soil was observed for M. sacchariflorus and M. giganteus, while M. sinensis it was much lower, which is confirmed by the values of the bioaccumulation factors. The translocation factor for trace metals in the studied grass species indicated great translocation of lead and nickel from the roots to rhizomes, and that of zinc to aboveground parts.
Słowa kluczowe
Rocznik
Strony
141--151
Opis fizyczny
Bibliogr. 25 poz., tab., rys.
Twórcy
  • Department of Botany and Ecology, UTP University of Science and Technology in Bydgoszcz, al. prof. S. Kaliskiego 9, 85-796 Bydgoszcz, Poland
autor
  • Department of Botany and Ecology, UTP University of Science and Technology in Bydgoszcz, al. prof. S. Kaliskiego 9, 85-796 Bydgoszcz, Poland
autor
  • Chair of Soil Science and Soil Protection, UTP University of Science and Technology in Bydgoszcz, ul. Bernardyńska 6/8, 85-029 Bydgoszcz, Poland
  • Chair of Soil Science and Soil Protection, UTP University of Science and Technology in Bydgoszcz, ul. Bernardyńska 6/8, 85-029 Bydgoszcz, Poland
Bibliografia
  • [1] WUANA R.A., OKIEIMEN F.E., Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation, ISRN Ecology, 2011, 1, DOI: org/10.5402/2011/402647.
  • [2] ASATI A., PICHHODE M., NIKHIL K., Effect of heavy metals on plants. An overview, IJAIEM, 2016, 5 (3), 56.
  • [3] MLECZEK M., MAGDZIAK Z., RISSMANN I., GOLINSKI P., Effect of different soil conditions on selected heavy metal accumulation by Salix viminalis tissues, J. Environ. Sci. Health, A Tox Hazard Subst Environ Eng., 2009, 44 (14), 1609.
  • [4] LUO CH., YANG R., WANG Y., LI Y., ZHANG G., LI X., Influence of agricultural practice on trace metals in soils and vegetation in the water conservation area along the East River (Dongjiang River) South China. Sci. Total Environ., 2012, 431, 26.
  • [5] Regulation of the Minister of the Environment dated 1 September 2016 on assessment procedures for the land surface pollution, Regulation No. 1395.
  • [6] WYSZKOWSKA J., BOROWIK A., KUCHARSKI M., KUCHARSKI J., Effect of cadmium, copper and zinc on plants, soil microorganisms and soil enzymes, J. Elem., 2013, 4, 769.
  • [7] ČECHMÁNKOVÁ J., VÁCHA R., SKÁLA J., HAVELKOVÁ M., Heavy metals phytoextraction from heavily and moderately contaminated soil by field crops grown in monoculture and crop rotation, Soil Water Res., 2011, 6 (3), 120.
  • [8] DUBE A., ZBYTNIEWSKI R., KOWALKOWSKI T., CUKROWSKA E., BUSZEWSKI B., Adsorption and migration of heavy metals in soil, Pol. J. Environ. Stud., 2001, 10 (1), 1.
  • [9] QISHLAQI A., MOORE F., Statistical analysis of accumulation and sources of heavy metals occurrence in agricultural soils of Khoshk River banks, Shiraz, Iran, Am.-Eur. J. Agr. Environ. Sci., 2007, 2, 565.
  • [10] NAZAR R., IQBAL N., MASOOD A., IQBAL M.R., SYEED S., KHAN N.A., Cadmium toxicity in plants and role of mineral nutrients in its alleviation, Am. J. Plant Sci., 2012, 3, 1476.
  • [11] HEATON E.A., DOHLEMAN F.G., MIGUEZ A.F., JUVIK J.A., LOZOVAYA V., WIDHOLM J., ZABOTINA O.A., MCISAAK G.F., DAVID M.B., VOIGHT T.B., BOERSMA N.N., LONG S.P., Miscanthus. A promising biomass crop, Adv. Bot. Res., 2010, 56, 75–137.
  • [12] SALT D.E., SMITH R.D., RASKIN I., Phytoremediation, Ann. Rev. Plant Phys. Plant. Mol. Biol. (Boil), 1998, 49, 643.
  • [13] KORZENIOWSKA J., STANISLAWSKA-GLUBIAK E., Phytoremediation potential of Miscanthus giganteus and Spartina pectinata in soil contaminated with heavy metals, Environ. Sci. Poll. Res., 2015, 22, 11648–11657.
  • [14] CATTANEO F., BARBANTI L., GIOACCHINI P., CIACATT C., MARZADORI C., 13 C abundance show effective soil carbon sequestration in Miscanthus and giant reed compared to arable crops under Mediterranean climate, Bio. Fertil. Soils, 2014, 50, 1121.
  • [15] NEUKIRCHEN D., HIMKEN M., LAMMEL J., CZYPIONKA-KRAUSE U., OLFS H.W., Spatial and temporal distribution of the root system and root nutrient content of an established Miscanthus crop, Eur. J. Agron., 1999, 11, 301.
  • [16] EZAKI B., NAGAO E., YAMAMOTO Y., NAKASHIMA S., ENOMOTO T., Wild plants Andropogon virginicus L. and Miscanthus sinensis are tolerant to multiple stress including aluminium, heavy metals and oxidative stress, Plant Cell Rep., 2008, 27, 951.
  • [17] ISO 10390, Soil quality. Determination of pH, 2005.
  • [18] ISO 14235, Soil quality. Determination of organic carbon by sulfochromic oxidation, 1998.
  • [19] IUSS Working Group WRB, World Reference Base for Soil Resources, World Soil Resources Reports No. 106, FAO Rome 2014.
  • [20] KRZCIUK K., GAŁUSZKA A., Prospecting for hyperaccumulators of trace elements. A review. Crit. Rev. Biotechnol., 2015, 35 (4), 522.
  • [21] LI G., DING N., ZHENG J., LIN Y., WANG Y., NIE X., Screening of plant species for phytoremediation of uranium, thorium, barium, nickel, strontium, and lead contaminated soils from a uranium mill tailings repository in south China, Bull. Environ. Cont. Toxicol., 2011, 86, 646.
  • [22] KALEMBASA D., MALINOWSKA E., Influence of sewage sludge fertilization on heavy metal content in biomass of silver grass during field experiment, Environ. Prot. Eng., 2009, 35 (2), 149.
  • [23] KOCHIAN L.V., Aluminium and heavy metal toxicity and resistance. Lessons to be learnt from similarities and differences, [In:] W.J. Horst, M.K. Schenk, A. Bürkert, N. Claassen, H. Flessa, W.B. Frommer, H. Goldbach, H.-W. Olfs, V. Römheld, B. Sattelmacher, U. Schmidhalter, S. Schubert, N. von Wirén, L. Wittenmayer (Eds.), Plant nutrition. Food security and sustainability of agro-ecosystems, Kluwer, New York 2001, 442.
  • [24] YRUELA I., Copper in plants. Acquisition, transport and interrelations, Funct. Plant Biol., 2005, 36 (5), 409.
  • [25] ALLOWAY B.J., Heavy Metals in Soils, 2nd Ed., Blackie Academic and Professional, London 1995, 351.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e266b487-31e2-44c4-9e57-d246a7fe6331
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.