PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Flexural vibration of coupled double-walled Carbon nanotubes conveying fluid under thermo-magnetic fields based on strain gradient theory

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The flexural vibration stability of a coupled double-walled viscoelastic carbon nanotube conveying a fluid based on the Timoshenko beam (TB) model is investigated. The coupled system is surrounded by an elastic medium which is simulated as Pasternak foundation. Van der Waals (vdW) forces between the inner and outer CNTs are taken into account based on the Lenard-Jones model. Using small scale theories, Hamilton’s principle and applying two dimensional (2D) magnetic field higher order governing equations are derived. The differential quadrature method (DQM) is applied to solve partial differential equations and investigate natural frequency of the system. The effects of viscoelastic constant, magnetic field with variable magnitudes and surface stresses on natural frequency of the structure are demonstrated in this study.
Rocznik
Strony
947--957
Opis fizyczny
Bibliogr. 16 poz., rys., tab.
Twórcy
  • Faculty of Mechanical Engineering, Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, Iran
autor
  • Faculty of Mechanical Engineering, Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, Iran
autor
  • Faculty of Mechanical Engineering, Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, Iran
autor
  • Faculty of Mechanical Engineering, Institute of Nanoscience and Nanotechnology, University of Kashan, Kashan, Iran
Bibliografia
  • 1. Ansari R., Mohammadi V., Shojaei M. F., Gholami R., Rouhi H., 2014, Nonlinear vibration analysis of Timoshenko nanobeams based on surface stress elasticity theory, European Journal of Mechanics A/Solids, 45, 143-152
  • 2. Ghorbanpour Arani A., Amir S., 2013, Electro-thermal vibration of visco-elastically coupled BNNT systems conveying fl uid embedded on elastic foundation via strain gradient theory, Physica B: Physics of Condensed Matter, 419, 1-6
  • 3. Ghorbanpour Arani A., Amir S., Dashti P., Yousefi M., 2014, Flow-induced vibration of double bonded visco-CNTs under magnetic fields considering surface effect, Computational Material Science, 86, 144-154
  • 4. Iijima S., 1991, Helical microtubules of graphitic carbon, Nature, 354, 56-58
  • 5. Ke L.L., Wang Y.S., 2011, Flow-induced vibration and instability of embedded double-walled carbon nanotubes based on a modified couple stress theory, Physica E: Low-Dimensional Systems and Nanostructures, 43, 1031-1039
  • 6. Khosrozadeh A., Hajabasi M.A., 2012, Free vibration of embedded double-walled carbon nanotubes considering nonlinear interlayer van der Waals forces, Applied Mathematical Modelling, 36, 997-1007
  • 7. Kiani K., 2014, Vibration and instability of a single-walled carbon nanotube in a three-dimensional magnetic field, Journal of Physical and Chemistry of Solids, 75, 15-22
  • 8. Kong S., Zhou S., Nie Z., Wang K., 2009, Static and dynamic analysis of micro beams based on strain gradient elasticity theory, International Journal of Engineering Science, 47, 487-498
  • 9. Lei X., Natsuki T., Shi J., Ni Q., 2012, Surface effects on the vibrational frequency of double- -walled carbon nanotubes using the nonlocal Timoshenko beam model, Composites Part B: Engineering, 43, 64-69
  • 10. Lei Y., Adhikari S., Friswell M. I., 2013, Vibration of nonlocal Kelvin-Voigt viscoelastic damped Timoshenko beams, International Journal of Engineering Science, 66/67, 1-13
  • 11. Lu P., He L.H., Lee H.P., Lu C., 2006, Thin plate theory including surface effects, International Journal of Solids and Structures, 43, 4631-4647
  • 12. Pradhan S.C., Mandal U., 2013, Finite element analysis of CNTs based on nonlocal elasticity and Timoshenko beam theory including thermal effect, Physica E: Low-Dimensional Systems and Nanostructures, 53, 223-232
  • 13. Shen H.S., Zhang C.L., 2011, Nonlocal beam model for nonlinear analysis of carbon nanotubes on elastomeric substrates, Computational Materials Science, 50, 1022-1029
  • 14. Xu M.R., Xu S.P., Guo H.Y., 2010, Determination of natural frequencies of fluid-conveying pipes using homotopy perturbation method, Computers and Mathematics with Applications, 60, 520-527
  • 15. Yin L., Qian Q., Wang L., 2011, Strain gradient beam model for dynamics of microscale pipes conveying fluid, Applied Mathematical Modelling, 35, 2864-2873
  • 16. Zhang C.L., Shen H.S., 2006, Temperature-dependent elastic properties of single-walled carbon nanotubes: Prediction from molecular dynamics simulation, Applied Physics Letters, 89, 081904
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e26194b9-5178-405f-ba91-455a9513aa3e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.