Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The unsteady laminar boundary layer characteristics of mixed convection flow past a vertical wedge have been investigated numerically. The free-stream velocity and surface temperature are assumed to be oscillating in the magnitude but not in the direction of the oncoming flow velocity. The governing equations have been solved by two distinct methods, namely, the straightforward finite difference method for the entire frequency range, and the extended series solution for low frequency range and the asymptotic series expansion method for high frequency range. The results demonstrate the effects of the Richardson number, Ri, introduced to quantify the influence of mixed convection and the Prandtl number, Pr, on the amplitudes and phase angles of the skin friction and heat transfer. In addition, the effects of these parameters are examined in terms of the transient skin friction and heat transfer.
Rocznik
Tom
Strony
169--186
Opis fizyczny
Bibliogr. 16 poz., wykr.
Twórcy
autor
- Department of Mathematics, University of Dhaka, Dhaka-1000, BANGLADESH
autor
- Department of Mathematics, University of Dhaka, Dhaka-1000, BANGLADESH
autor
- Department of Mathematics and Natural Sciences, BRAC University BANGLADESH
Bibliografia
- [1] Ishigaki H. (1971): An exact periodic solution of the energy equation. – J. Fluid Mech., vol.50, pp.657–668.
- [2] Lighthill M.J. (1954): The response of laminar skin friction and heat transfer to fluctuations in the stream velocity. – Proc. R. Soc. Lond. A, vol.224, pp.1–23.
- [3] Glauert M.B. (1955): The laminar boundary layer on oscillating plates and cylinders. – J. Fluid Mech., vol.1, pp.97–110.
- [4] Ishigaki H. (1970): Periodic boundary layer near a two-dimensional stagnation point. – J. Fluid Mech., vol.43, pp.477–486.
- [5] Ishigaki H. (1972): Heat transfer in a periodic boundary layer near a two-dimensional stagnation point. – J. Fluid Mech., vol.56, pp.619–627.
- [6] Ishigaki H. (1971): Skin friction and surface temperature of an insulated flat plate fixed in a fluctuating stream. – J. Fluid Mech., vol.46, pp.165–175.
- [7] Ishigaki H. (1971): The effect of oscillation on flat plate heat transfer. – J. Fluid Mech., vol.47, pp.537–546.
- [8] Gersten K. (1965): Heat transfer in laminar boundary layers with oscillating outer flow. – AGARBograph, vol.97, pp.423–475.
- [9] Kumari M. and Gorla R.S.R. (1997): Combined convection along a non-isothermal wedge in a porous medium. – Heat Mass Transf., vol.32, pp.393–398.
- [10] Hossain M.A., Munir M.S., Hafiz M.Z. and Takhar H.S. (2000): Flow of a viscous incompressible fluid of temperature dependent viscosity past a permeable wedge with uniform surface heat flux. – Heat Mass Transf., vol.36, pp.333–341.
- [11] Kumari M., Takhar H.S. and Nath G. (2001): Mixed convection flow over a vertical wedge embedded in a highly porous medium. – Heat Mass Transf., vol.37, pp.139–146.
- [12] Kandasamy R., Muhaimin I. and Khamis A.B. (2009): Thermophoresis and variable viscosity effects on MHD mixed convective heat and mass transfer past a porous wedge in the presence of chemical reaction. – Heat Mass Transf., vol.45, pp.703–712.
- [13] Nanda R.S. and Sharma V.P. (1962): Free convection laminar boundary layers in oscillatory flow. – J. Fluid Mech., vol.15, pp.419–428.
- [14] Sinha P.C. and Singh P. (1970): Transient free convection flow due to the arbitrary motion of a vertical plate. – Proc. Camb. Phil. Soc., vol.67, pp.677–688.
- [15] Butcher J.C. (1964): Implicit Runge-Kutta method. – Math. Com., vol.18, pp.50–55.
- [16] Naschtsheim P.R. and Sweigert P. (1965): Satisfaction of asymptotic boundary conditions in numerical solution of systems of non-linear equation of boundary layer type. – NASA TN D-3004.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e2612f92-5925-40a7-9d92-1c325f2701d6