PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On a Robin (p, q)-equation with a logistic reaction

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We consider a nonlinear nonhomogeneous Robin equation driven by the sum of a p-Laplacian and of a q-Laplacian ((p,q)-equation) plus an indefinite potential term and a parametric reaction ol logistic type (superdiffusive case). We prove a bilurcation-type result describing the changes in the set ol positive solutions as the parameter λ > 0 varies. Also, we show that lor every admissible parameter λ > 0, the problem admits a smallest positive solution. Keywords: positive solutions, superdiffusive reaction, local minimizers, maximum principle, min
Rocznik
Strony
227--245
Opis fizyczny
Bibliogr. 32 poz.
Twórcy
  • National Technical University Department of Mathematics Zografou Campus, 15780, Athens, Greece
  • University of Palermo Department of Mathematics and Computer Science Via Archirafi 34, 90123, Palermo, Italy
  • Nonlinear Analysis Research Group Faculty of Mathematics and Statistics Ton Due Thang University Ho Chi Minh City, Vietnam
Bibliografia
  • [1] S. Aizicovici, N.S. Papageorgiou, V. Staicu, Degree theory for operators of monotone type and nonlinear elliptic equations with inequality constraints, Mem. Amer. Math. Soc. 196 (2008) 915, 70 pp.
  • [2] A. Ambrosetti, D. Lupo, On a class of nonlinear Dirichlet problems with multiple solutions, Nonlinear Anal. 8 (1984), 1145-1150.
  • [3] A. Ambrosetti, G. Mancini, Sharp nonuniqueness results for some nonlinear problems, Nonlinear Anal. 3 (1979), 635-645.
  • [4] T. Cardinali, N.S. Papageorgiou, P. Rubbioni, Bifurcation phenomena for nonlinear superdiffusive Neumann equations of logistic type, Ann. Mat. Pura Appl. 193 (2013), 1-21.
  • [5] L. Cherfils, Y. IFyasov, On the stationary solutions of generalized reaction diffusion equations with p&zq-Laplacian, Commun. Pure Appl. Anal. 4 (2005) 1, 9-22.
  • [6] W. Dong, A priori estimates and existence of positive solutions for a quasilinear elliptic equation, J. Lond. Math. Soc. 72 (2005), 645-662.
  • [7] W. Dong, J. Chen, Existence and multiplicity results for a degenerate elliptic equation, Acta Math. Sin. (Engl. Ser.) 22 (2008), 665-670.
  • [8] M. Filippakis, D. O'Regan, N.S. Papageorgiou, Positive solutions and bifurcation phenomena for nonlinear elliptic equations of logistic type: The superdiffusive case, Comm. Pure Appl. Anal. 9 (2010) 6, 1507-1527.
  • [9] G. Fragnelli, D. Mugnai, N.S. Papageorgiou, The Brezis-Oswald result for quasilinear Robin problems, Adv. Nonlinear Stud. 16 (2016), 403-422.
  • [10] L. Gasiński, N.S. Papageorgiou, Exercises in Analysis. Part 2, Springer, Cham, 2016.
  • [11] L. Gasiński, N.S. Papageorgiou, Positive solutions for the Robin p-Laplacian problem with competing nonlinearities, Adv. Calc. Var (2017), doi:10.1515/acv-2016-0039.
  • [12] M.E. Gurtin, R.C. MacCamy, On the diffusion of biological population, Math. Biosci. 33 (1977), 35-49.
  • [13] S. Hu, N.S. Papageorgiou, Handbook of Multivalued Analysis. Volume I: Theory, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1997.
  • [14] S. Kamin, L. Veron, Flat core properties associated to the p-Laplace operator, Proc. Amer. Math. Soc. 118 (1993), 1079-1085.
  • [15] G.M. Lieberman, The natural generalization of the natural conditions of Ladyzhenskaya and Ural'tseva for elliptic equations, Comm. Partial Diff. Equations 16 (1991), 311-361.
  • [16] S.A. Marano, N.S. Papageorgiou, Constant sign and nodal solutions for a Neumann problem, with p-Laplacian and equidiffusive reaction term,, Topol. Methods Nonlinear Anal. 38 (2011), 233-248.
  • [17] S.A. Marano, N.S. Papageorgiou, Positive solutions to a Dirichlet problem, with, p-Laplacian and concave-convex nonlinearity depending on a parameter, Commun. Pure Appl. Anal. 12 (2013), 815-829.
  • [18] N.S. Papageorgiou, F. Papalini, Constant sign and nodal solutions for logistic-type equations with equidiffusive reaction, Monatsh. Math. 165 (2014), 91-116.
  • [19] N.S. Papageorgiou, F. Papalini, On p-logistic equations of equidiffusive type, Positivity 21 (2017), 9-21.
  • [20] N.S. Papageorgiou, V.D. Radulescu, Multiple solutions with, precise sign for nonlinear parametric Robin problems, J. Differential Equations 256 (2014), 2449-2479.
  • [21] N.S. Papageorgiou, V.D. Radulescu, Nonlinear nonhomogeneous Robin problems with superlinear reaction term, Adv. Nonlinear Stud. 16 (2016), 737-764.
  • [22] N.S. Papageorgiou, P. Winkert, On a parametric nonlinear Dirichlet problem with subdiffusive and equidiffusive reaction, Adv. Nonlinear Stud. 14 (2014), 565-591.
  • [23] N.S. Papageorgiou, V.D. Radulescu, D.D. Repovs, Positive solutions for perturbations of the Robin eigenvalue problem, plus an indefinite potential, Discrete Contin. Dyn. Syst. Ser. A 37 (2017), 2589-2618.
  • [24] N.S. Papageorgiou, V.D. Radulescu, D.D. Repovs, Positive solutions for super diffusive mixed problems, Appl. Math. Lett. 77 (2018), 87-93.
  • [25] N.S. Papageorgiou, V.D. Radulescu, D.D. Repovs, Positive solutions for nonlinear, nonhomogeneous parametric Robin problems, Forum Math. 30 (2018), 553-580.
  • [26] P. Pucci, J. Serrin, The Maximum Principle, Birkhauser Verlag, Basel, 2007.
  • [27] V.D. Radulescu, D.D. Repovs, Combined effects in nonlinear problems arising in the study of anisotropic continuous media, Nonlinear Anal. 75 (2012), 1524-1530.
  • [28] M. Struwe, A note on a result of Ambrosetti and Mancini, Ann. Mat. Pura Appl. 131 (1982), 107-115.
  • [29] M. Struwe, Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer-Verlag, Berlin, 1990.
  • [30] S. Takeuchi, Multiplicity result for a degenerate elliptic equation with a logistic reaction, J. Differential Equations 173 (2001), 138-144.
  • [31] S. Takeuchi, Positive solutions of a degenerate elliptic equation with a logistic reaction, Proc. Amer. Math. Soc. 129 (2001), 433-441.
  • [32] V.V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR lzv. 29 (1987), 33-66.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e25cf48b-02ca-4487-a3df-cfd002b98405
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.