PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Can smoke control become smart?

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Smoke control solutions are used to maintain tenable conditions in buildings, enabling evacuation process, rescue operations and reducing the thermal stress on the building structure. For last 50-years the design process of such solutions did not significantly change – a required volumetric capacity is calculated with theoretical and empirical models, and further, mechanical design is prepared to deliver this capacity. In this paper, a new approach – “smart smoke control” is introduced, as a system that adapts the performance parameters based on the momentary measurements of temperature in the building. The system follows the growth and decay of fire in the building, which allows optimization of its mechanical parameters, and provides substantial increase in the performance. This paper provides a discussion on traditional and new concepts in smoke control, and defines areas, in which a paradigm shift must occur, to enable widespread adoption new and more efficient solutions. The paper does also refer to previous proof of concept studies, presenting the preliminary assessment of the performance of a smart smoke control system.
Rocznik
Strony
201--208
Opis fizyczny
Bibliogr. 21 poz., il., tab.
Twórcy
  • Instytut Techniki Budowlanej, Zakład Badań Ogniowych, Warsaw, Poland
Bibliografia
  • 1. Węgrzyński, W. & Sulik, P. Bull. Polish Acad. Sci. Tech. Sci. 64, 719-730 (2016)
  • 2. Thomas, P. H., Hinkley, P. L., Theobald, C. R. & Simms, D. L. Investigations into the flow of hot gases in roof venting. Fire Research Technical Paper No 7 (1963)
  • 3. Law, M. Fire Saf. J. 10, 197-202 (1986)
  • 4. Morgan, H. P. & Hansell, G. O. Fire Saf. J. 13, 221-224 (1988)
  • 5. Morgan, H. P. et al. Design methodologies for smoke and heat exhaust ventilation. BR 368 (BRE, 1999)
  • 6. Harrison, R. & Spearpoint, M. Fire Technol. 43, 301-317 (2007)
  • 7. Węgrzyński, W. Int. J. Heat Mass Transf. 114, 483-500 (2017)
  • 8. Klote, J. H. in SFPE Handbook of Fire Protection Engineering 1785-1823 (Springer New York, 2016) doi: 10.1007/978-1-4939-2565-0_50
  • 9. NFPA 204 (2015)
  • 10. BSI 7346-4 (2003)
  • 11. Alvarez, A., Meacham, B. J., Dembsey, N. & Thomas, J. J. Fire Prot. Eng. 23, 249-276 (2013)
  • 12. Tofiło, P., Węgrzyński, W. & Porowski, R. in 11th Conference on Performance-Based Codes and Fire Safety Design Methods (SFPE, 2016)
  • 13. EN 12101-3:2015-10.
  • 14. Hinkley, P. L. Fire Saf. J. 10, 57-65 (1986)
  • 15. ANSYS. ANSYS Fluent 14.5.0 - Technical Documentation. (2014)
  • 16. Król, A. & Król, M. Tunn. Undergr. Sp. Technol. 73, 222-235 (2018)
  • 17. van Oerle, N., Lemaire, A. & van de Leur, P. in TNO Report No. 1999-CVB-RR1442 (1999)
  • 18. Drysdale, D. D. An Introduction to Fire Dynamics, 3rd Edition. (Wiley, 2011)
  • 19. Karlsson, B. & Quintiere, J. G. Enclosure Fire Dynamics. (CRC Press, 2000)
  • 20. UE 305/2011 (2011)
  • 21. UE M/109-23/33 (1996)
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e25482f0-1246-45f3-aff0-3bc8a37c1257
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.